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Abstract1

The field of automatic speaker recognition (ASR) has seen a se-2

ries of generational changes to speaker modelling approaches3

in the last 3 decades. Adoption of new approaches has mainly4

been driven by improvements observed in overall system-level5

performance metrics on common datasets. There is now con-6

siderable debate within the field around understanding why sys-7

tems perform better for some speakers than others. In this study,8

we compare the performance of 4 generations of ASR systems9

with the same set of forensically-relevant test and calibration10

data. On a system- and individual speaker-level, we observe im-11

provements from GMM-UBM to i-vector to x-vector but not for12

ECAPA-TDNN. We find that certain individuals remain diffi-13

cult to recognise across all systems. Our findings show that both14

file- and speaker-level factors contribute to the performance of15

individual speakers and systems overall, which supports calls16

for more detailed exploration of system performance.17

Index Terms: automatic speaker recognition, forensic applica-18

tions, by-speaker performance19

1. Introduction20

1.1. Speaker modelling approaches21

Over the last few decades, there has been a series of step22

changes in speaker modelling approaches used in automatic23

speaker recognition (ASR) systems. In the early 2000s, Gaus-24

sian Mixture Models (GMM) were the predominant approach;25

these are generative models of raw short-term acoustic features26

such as MFCCs, summarised with a series of means, variances,27

and weights. The GMM-UBM approach [1] incorporates a Uni-28

versal Background Model (UBM) to increase generalisability of29

the model, as well as Maximum a Posteriori (MAP) adaptation,30

which involves adapting the UBM towards the data from a target31

speaker to build a target speaker model. The early 2010s wel-32

comed i-vectors [2], an extension of GMMs whereby features33

are converted to a compact, fixed-length vector via projection in34

a total variability subspace. Then x-vectors [3] were introduced,35

which incorporate neural architectures to produce fixed-length36

speaker models from an embedding within a time-delay neural37

network (TDNN). The latest generation of speaker modelling38

is Emphasized Channel Attention, Propagation and Aggrega-39

tion in TDNN (ECAPA-TDNN) [4], which shares a similar ap-40

proach to x-vectors but with the addition of a ResNet neural41

architecture and an attention mechanism.42

The aims of each new generation of speaker modelling are43

to maximise between-speaker variability and minimise within-44

speaker variability, and to reduce the effects of nuisance vari-45

ables (often technical, e.g. noise, channel, duration). Improve-46

ments in overall system performance are generally reported47

from one generation to the next, and the community converges 48

around the new approach without necessarily exploring why the 49

new approach works better for some speakers than for others. 50

1.2. Evolution of the field of speaker recognition 51

Two major issues with current approaches to ASR system de- 52

velopment were raised at a special panel session of the 2024 53

Odyssey workshop. First, there is a convergence of approaches. 54

As soon as a new approach is shown to outperform its prede- 55

cessor, the community jumps to the new state-of-the-art. This is 56

driven by the second issue raised, which is the focus on bench- 57

marking exercises such as the regular speaker recognition eval- 58

uations organised by NIST [5]. Current evaluative approaches 59

centre around achieving the best performance on benchmark- 60

ing datasets, with improvements measured at a global level, e.g. 61

Equal Error Rate (EER). This focus on overall error metrics 62

leads to a number of problems, e.g. it masks variability in sys- 63

tem performance as a function of speaker or other factors, and 64

does not consider specific use cases, such as the application of 65

ASR systems in the forensic domain. 66

Increasingly, ASR systems are being used to generate 67

forensic evidence in voice comparison cases [6]. For forensic 68

applications, users need to know that the system works under 69

the conditions of their specific case. It is therefore necessary 70

to test and validate the system prior to use in a forensic case, 71

in order to fully understand the extent of variation in perfor- 72

mance as a function of factors commonly encountered in case- 73

work. Further, of crucial concern to the analyst is the specific 74

voices being compared, thus understanding system performance 75

at a speaker-specific level is a priority, i.e., how does the system 76

perform for the specific type of speakers in this case? [7] and 77

[anon] begin to explore performance variability at an individ- 78

ual speaker-level, investigating why certain speakers may prove 79

more difficult to recognise than others. Both papers investigate 80

the phonetic content of recordings and how the inclusion or ex- 81

clusion of different types of speech sounds impacts ASR per- 82

formance (measured via by-speaker Cllr). 83

1.3. This study 84

This study builds on [anon], which focused on speaker-level 85

variability in ASR performance and started to explore why some 86

speakers prove more challenging, namely by manipulating the 87

phonetic content of the samples. In the present study, we use the 88

same set of forensically-realistic recordings to explore speaker- 89

level variability in performance across four generations of an 90

ASR system based on different speaker modelling approaches. 91

The four approaches, from oldest to most recently developed, 92

are GMM-UBM, i-vector, x-vector and ECAPA-TDNN. We 93

first compare performance at an overall system-level, with a fo- 94



cus on speaker discrimination. Then we compare performance95

at the speaker level, exploring how consistently the approaches96

perform for individual speakers. We conduct a detailed exami-97

nation of the results, at both the level of the speaker and of indi-98

vidual comparisons, in order to assess why some speakers con-99

sistently prove challenging even to the best-performing speaker100

modelling approach.101

2. Methods102

2.1. Data103

The data for this study comes from GBR-ENG, a dataset of104

forensically-realistic recordings collected and provided by the105

UK Government. The full dataset contains 1,946 speakers (906106

male, 1,040 female) of British English, with considerable vari-107

ability in age, and regional and social background. There are108

multiple samples for each speaker (mean = 10; 12,483 files in109

total), typically recorded over a number of days. Samples con-110

tain spontaneous conversational speech, have a duration of be-111

tween 181 and 373 seconds, and are telephone recordings with112

a mix of landline and mobile recordings.113

2.2. Test and calibration sets114

For this study we used the same subset of GBR-ENG as in115

[anon], composed of 98 male speakers; these are divided into116

a test set comprising 48 speakers with between 3 and 7 files117

each (160 files total) and a calibration set comprising 50 speak-118

ers with 2 files each. All recordings are mobile telephone calls119

recorded on different days, with between 41 and 236 seconds of120

net speech, and are relatively good quality in terms of signal-to-121

noise ratio and little to no clipping.122

2.3. Automatic speaker recognition system123

Testing was carried out using VOCALISE 2021 (version124

3.0.0.1746) [8], which has been widely used for forensic125

speaker comparison casework. We used three approaches126

to speaker modelling currently available within the software,127

along with another comparably-trained approach:128

1. GMM-UBM with Maximum A Posteriori adaptation129

2. i-vector with dimension reduction via Linear Discriminant130

Analysis (LDA) and scoring with a pre-trained Probabilistic131

Linear Discriminant Analysis (PLDA) model132

3. x-vector with dimension reduction via LDA and scoring with133

a pre-trained PLDA model134

4. ECAPA-TDNN with Cosine Distance scoring135

The GMM-UBM and i-vector approaches are trained on the136

same data, which is a subset of a larger dataset used to train both137

the x-vector and ECAPA-TDNN approaches. High-level details138

about training data can be found in [9].139

For each approach, same-speaker (SS) and different-140

speaker (DS) scores were computed for both the test and cal-141

ibration sets. The calibration scores were used to train a logistic142

regression model [10] and the coefficients were applied to the143

test scores to produce calibrated log10 likelihood ratios (LLRs).144

There were a total of 200 SS LLRs and 12,520 DS LLRs per145

approach. LLRs were used as the basis for evaluating perfor-146

mance at a system- and speaker-level.147

2.4. Evaluation148

Overall performance was evaluated using Equal Error Rate149

(EER) and Log Likelihood Ratio Cost Function (Cllr) [11]. In150

both cases, the closer the value to 0, the better the performance. 151

In the case of Cllr, a value of 1 or above means that the system 152

is not providing any useful speaker discriminatory information. 153

Cllr has two components: Cllr
min (a measure of discrimination 154

error, where 0 means perfect separation of SS and DS scores) 155

and Cllr
cal (a measure of calibration error). 156

We use a combination of LLRs (including mean SS and DS 157

LLRs) and Cllr
min to evaluate performance at a speaker-level. 158

We opted for Cllr
min since Cllr

cal is volatile with a small num- 159

ber of files per speaker and given our interest in discrimination 160

rather than calibration. A Cllr
min of 0 means that perfect dis- 161

crimination can be achieved for that speaker with the optimally- 162

selected calibration data. 163

3. Results 164

3.1. Overall system performance 165

Table 1 shows the overall performance for each speaker mod- 166

elling approach. Major improvements are observed in both EER 167

and Cllr from GMM-UBM to i-vector and from i-vector to x- 168

vector. On our dataset, ECAPA-TDNN performs better than 169

i-vector but not as well as x-vector, with EER and Cllr values al- 170

most double the corresponding values for the x-vector approach. 171

Table 1: Overall performance of the four speaker modelling
approaches.

EER (%) Cllr Cllr
min Cllr

cal

GMM-UBM 44.5 0.97 0.92 0.05
i-vector 23.5 0.67 0.58 0.09
x-vector 3.0 0.13 0.10 0.03

ECAPA-TDNN 7.0 0.27 0.21 0.06

Table 2 shows the correlations between the uncalibrated 172

scores of the comparisons from one generation of speaker mod- 173

elling approach to the next, separated for SS and DS compar- 174

isons. Strong positive correlations are observed in every case 175

for SS comparisons, while moderate to strong correlations are 176

found for DS comparisons. 177

Table 2: Pearson’s correlation coefficients and p-values for
comparisons of raw scores of individual comparisons across
each approach and its successor, separated for same-speaker
(SS) and different-speaker (DS) comparisons.

Approach 1 Approach 2 r p

SS
GMM-UBM i-vector 0.745 <.0001

i-vector x-vector 0.742 <.0001
x-vector ECAPA-TDNN 0.760 <.0001

DS
GMM-UBM i-vector 0.834 <.0001

i-vector x-vector 0.630 <.0001
x-vector ECAPA-TDNN 0.496 <.0001

3.2. By-speaker performance 178

3.2.1. Speaker discrimination 179

Figure 1 tracks the by-speaker Cllr
min across the four speaker 180

modelling approaches. First, we focus on the three less recent 181

approaches (GMM-UBM to i-vector to x-vector). For all speak- 182

ers, Cllr
min decreases from one approach to the next, showing 183

that performance improves with newer generations of modelling 184



approaches. The range of Cllr
min across the speakers also de-185

creases from GMM-UBM (0.97) to i-vector (0.62) to x-vector186

(0.37), showing that overall performance also becomes more187

consistent within a system.188

Figure 1: By-speaker Cllr
min across four different speaker mod-

elling approaches. Note that the y-axis is log10 scaled to provide
better resolution at the lower end of the scale (particularly for
the x-vector and ECAPA-TDNN approaches).
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An optimal Cllr
min of 0 was achieved for 1 speaker using189

the GMM-UBM approach and 13 speakers using the i-vector190

approach. The x-vector approach resulted in an EER of 0% and191

a Cllr
min of 0 for 38 of the 48 speakers (79%). EER for the other192

10 speakers ranged from 0.21% to 27.92% (0.21% to 2.87%193

excluding speaker 244) and Cllr
min ranged from 0.015 to 0.37.194

We return to these speakers later.195

ECAPA-TDNN did not outperform x-vector, despite being196

the latest generation tested. An optimal Cllr
min of 0 was achieved197

for 33 speakers (69%) by the ECAPA-TDNN approach; thus,198

ECAPA-TDNN had perfect discrimination (Cllr
min = 0) for 5199

fewer speakers than x-vector. Cllr
min stayed the same for 35200

speakers (73%) and increased (i.e., got worse) for 11 speakers201

(23%). Only 2 speakers (4%) had a lower (i.e., better) Cllr
min.202

Table 3: Spearman’s rank correlation coefficients and p-values
for comparisons of by-speaker Cllr

min across each approach and
its successor.

Approach 1 Approach 2 ρ p
GMM-UBM i-vector 0.655 <.0001

i-vector x-vector 0.482 <.001
x-vector ECAPA-TDNN 0.799 <.0001

The ranking of speakers within the group was highly cor-203

related across the different approaches (see Table 3), particu-204

larly across the GMM-UBM and i-vector approaches and the205

x-vector and ECAPA-TDNN approaches. The slightly weaker206

correlation between i-vector and x-vector is likely a result of the207

large number of speakers for whom Cllr
min dropped to 0 when208

using the x-vector approach. In general, then, if one generation209

of speaker modelling works well for an individual speaker, the210

next generation generally also works well for that speaker.211

3.2.2. Log Likelihood Ratios 212

Figure 2 shows the mean same-speaker and different-speaker 213

LLRs for each individual speaker across the GMM-UBM, i- 214

vector and x-vector approaches. In general, LLRs become 215

stronger (i.e., further from 0) with regard to both SS and DS 216

comparisons from each approach to the next. 217

Figure 2: Mean same-speaker (SS) and different-speaker (DS)
log likelihood ratios (LLRs) for GMM-UBM, i-vector and x-
vector approaches.
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In every case, the DS LLRs increase in magnitude (to- 218

wards a larger negative value) from GMM-UBM to i-vector to 219

x-vector, demonstrating better speaker discrimination in newer 220

approaches. SS LLRs also tend to increase in magnitude (to- 221

wards a larger positive value), with a few exceptions from 222

GMM-UBM to i-vector at the bottom end of the distribution 223

and one exception from i-vector to x-vector. 224

The relationship between the x-vector and ECAPA-TDNN 225

approaches (not shown in Figure 2) was not as clear, though the 226

LLRs generally decreased in magnitude (i.e., got closer to 0) 227

from x-vector to ECAPA-TDNN for SS and/or DS comparisons. 228

3.3. By-file performance 229

For this part of the analysis, we focused on the results of the x- 230

vector approach as it outperformed the other methods both over- 231

all and at the speaker-level. There were 10 speakers for whom 232

the x-vector approach did not achieve perfect speaker discrim- 233

ination, i.e., their Cllr
min was greater than 0, which is the result 234

of overlap in the LLRs for the SS and DS comparisons involv- 235

ing each of these speakers. It was found that these speakers also 236

had low mean SS LLRs (ranging between -0.26 and 1.56), com- 237

pared with the mean SS LLRs for the other 38 speakers (ranging 238

between 0.91 and 2.98). 239

Inspection of the SS LLRs for these 10 speakers revealed 240

that 8 of them had what could be termed a problem file. These 8 241

speakers have 3 files in the test set and therefore 3 SS compari- 242

son pairs, i.e., A vs B, A vs C and B vs C. For these speakers, the 243

2 comparisons involving the problem file (A) produced consid- 244

erably lower LLRs than the comparison between B and C (see 245

Figure 3). These results suggest that the poorer performance 246

of these speakers is the consequence of the single problem file, 247

rather than an inherent speaker issue. We consider the potential 248



causes of this in the discussion.249

Figure 3: LLRs for same-speaker comparisons for 8 speakers
with Cllr

min above 0 (using the x-vector approach) with 1 prob-
lem file (A) out of 3.
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No problem file was found for the other 2 speakers (num-250

bers 201 and 561; not shown in Figure 3), who have 5 and 4251

files in the test set respectively and mean SS LLRs around 1.5,252

which is higher than the mean SS LLRs of below 1 for the other253

8 speakers. For these 2 speakers, examination of the DS LLRs254

that overlap with the SS LLRs (i.e., those which cause the non-255

perfect discrimination) shows that almost all of these DS com-256

parisons are with a single speaker. For speaker 201, 3 out of 4257

DS comparisons are with speaker 1811 and for speaker 561, 8258

out of 9 DS comparisons are with speaker 1254. All LLRs for259

these comparisons are greater than 0. These results show that260

a large contributory factor to the poorer performance for these261

2 speakers is the comparisons with a single speaker. The same262

finding was also apparent for some of the other 8 speakers with263

problem files, highlighting that poorer performance can have264

multiple causes.265

4. Discussion266

Using our set of forensically-realistic recordings, improve-267

ments in performance at both an overall system- and individ-268

ual speaker-level were observed from GMM-UBM to i-vector269

to x-vector; these results were expected given the major devel-270

opments from one generation to the next. We also found that the271

x-vector approach outperformed a newer generation of speaker272

modelling, ECAPA-TDNN. However, the ECAPA-TDNN and273

x-vector systems used in this study were trained with the same274

data: all sampled at 8kHz and containing a significant quan-275

tity of telephone speech, making it relatively matched to the276

test conditions. Reference implementations of ECAPA-TDNN277

shown to outperform x-vector, e.g. [4], have been trained with278

speech sampled at 16kHz. We speculate that a combination of279

narrow bandwidth and telephone test condition is responsible280

for the more effective x-vector system in this study.281

The analysis of individual speaker performance showed282

general trends, revealed some differences in speaker behaviour283

and highlighted speakers with poorer performance. The indi-284

vidual speaker performance metrics (Cllr
min, mean SS and DS285

LLRs) provided useful insights into the variation found across286

systems for individual speakers. However, they can still mask287

details in the results for individual files which may allow some288

of the differences in performance to be explained. 289

We concentrated our attention on the 10 speakers who were 290

not perfectly discriminated by the best performing x-vector sys- 291

tem. We found that 8 of the 10 speakers had a problem file 292

that caused weaker LLRs for SS comparisons involving that 293

file. Preliminary auditory and acoustic analysis of the files re- 294

vealed observable differences between the problem file (A) and 295

the other two files (B and C) for all 8 speakers. The differences 296

related to a range of technical factors (e.g. distance from mi- 297

crophone, background noise, attenuation of frequency bands), 298

speaker factors (e.g. voice quality) and stylistic factors (e.g. 299

increased vocal effort, pitch variability). These factors were 300

present (or absent) to a greater or lesser extent and in differ- 301

ent combinations across the problem files. If these factors are 302

the cause of the lower SS LLRs, then their number, interdepen- 303

dencies and potential to vary within recordings leads to a com- 304

plex situation. However, these findings are encouraging as they 305

show that some of the potential causes of poorer performance 306

can be readily observed in recordings. They are also amenable 307

to control, allowing their impact on performance to be tested. 308

The remaining 2 speakers did not have a problem file, but 309

their overlapping DS LLRs resulted almost exclusively from 310

multiple comparisons with only 1 other speaker. Preliminary 311

assessment of these files indicates some similarity in speaker- 312

related rather than technical factors, although not all compar- 313

isons between these speakers resulted in LLRs that overlap with 314

SS LLRs. A similar finding was also made for some of the other 315

8 speakers, which suggests that their poorer performance was 316

due to factors affecting both their SS and DS comparisons. 317

The findings presented clearly demonstrate that system- 318

level performance metrics mask a wealth of detail about the be- 319

haviour of speakers in ASR systems. Even considering perfor- 320

mance at a speaker-level can hide valuable insights which are 321

only revealed when looking at the file-level behaviour. These 322

findings clearly support the calls made at the 2024 Odyssey 323

workshop for more detailed investigations into the factors af- 324

fecting individual performance. Future investigations should 325

focus on disentangling and objectively measuring the factors 326

which influence individual speaker performance. 327

5. Conclusion 328

The novel approach we have taken to evaluating ASR per- 329

formance provides insights into variability both between and 330

within different speaker modelling approaches. Performance 331

is generally shown to improve over generations, which is re- 332

flected in both overall performance metrics and speaker-level 333

trends (i.e. good speakers remain good and poor speakers re- 334

main poor). This work goes beyond the findings of [anon] 335

and suggests that variability in performance is related to both 336

speaker- and file-level factors. While speaker factors, e.g. the 337

phonetic make-up of samples, may still contribute to a particular 338

file proving problematic, the specific cause is likely a complex 339

combination of technical, speaker and stylistic factors. Under- 340

standing individual speaker and file behaviour will ultimately 341

allow us to predict what types of behaviour are more likely to 342

influence system performance, which in turn will assist analysts 343

using ASR systems in forensic voice comparison cases. In fu- 344

ture work, we will begin to disentangle the complex interaction 345

of factors contributing to certain files or speakers proving prob- 346

lematic to the ASR system by running a series of experiments 347

using controlled data to explore, for example, the effects of vo- 348

cal conditions combined with technical factors to understand 349

their impact on performance. 350
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