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Abstract

The field of automatic speaker recognition (ASR) has seen a se-
ries of generational changes to speaker modelling approaches
in the last 3 decades. Adoption of new approaches has mainly
been driven by improvements observed in overall system-level
performance metrics on common datasets. There is now con-
siderable debate within the field around understanding why sys-
tems perform better for some speakers than others. In this study,
we compare the performance of 4 generations of ASR systems
with the same set of forensically-relevant test and calibration
data. On a system- and individual speaker-level, we observe im-
provements from GMM-UBM to i-vector to x-vector but not for
ECAPA-TDNN. We find that certain individuals remain diffi-
cult to recognise across all systems. Our findings show that both
file- and speaker-level factors contribute to the performance of
individual speakers and systems overall, which supports calls
for more detailed exploration of system performance.

Index Terms: automatic speaker recognition, forensic applica-
tions, by-speaker performance

1. Introduction
1.1. Speaker modelling approaches

Over the last few decades, there has been a series of step
changes in speaker modelling approaches used in automatic
speaker recognition (ASR) systems. In the early 2000s, Gaus-
sian Mixture Models (GMM) were the predominant approach;
these are generative models of raw short-term acoustic features
such as MFCCs, summarised with a series of means, variances,
and weights. The GMM-UBM approach [1] incorporates a Uni-
versal Background Model (UBM) to increase generalisability of
the model, as well as Maximum a Posteriori (MAP) adaptation,
which involves adapting the UBM towards the data from a target
speaker to build a target speaker model. The early 2010s wel-
comed i-vectors [2], an extension of GMMs whereby features
are converted to a compact, fixed-length vector via projection in
a total variability subspace. Then x-vectors [3] were introduced,
which incorporate neural architectures to produce fixed-length
speaker models from an embedding within a time-delay neural
network (TDNN). The latest generation of speaker modelling
is Emphasized Channel Attention, Propagation and Aggrega-
tion in TDNN (ECAPA-TDNN) [4], which shares a similar ap-
proach to x-vectors but with the addition of a ResNet neural
architecture and an attention mechanism.

The aims of each new generation of speaker modelling are
to maximise between-speaker variability and minimise within-
speaker variability, and to reduce the effects of nuisance vari-
ables (often technical, e.g. noise, channel, duration). Improve-
ments in overall system performance are generally reported

from one generation to the next, and the community converges
around the new approach without necessarily exploring why the
new approach works better for some speakers than for others.

1.2. Evolution of the field of speaker recognition

Two major issues with current approaches to ASR system de-
velopment were raised at a special panel session of the 2024
Odyssey workshop. First, there is a convergence of approaches.
As soon as a new approach is shown to outperform its prede-
cessor, the community jumps to the new state-of-the-art. This is
driven by the second issue raised, which is the focus on bench-
marking exercises such as the regular speaker recognition eval-
uations organised by NIST [5]. Current evaluative approaches
centre around achieving the best performance on benchmark-
ing datasets, with improvements measured at a global level, e.g.
Equal Error Rate (EER). This focus on overall error metrics
leads to a number of problems, e.g. it masks variability in sys-
tem performance as a function of speaker or other factors, and
does not consider specific use cases, such as the application of
ASR systems in the forensic domain.

Increasingly, ASR systems are being used to generate
forensic evidence in voice comparison cases [6]. For forensic
applications, users need to know that the system works under
the conditions of their specific case. It is therefore necessary
to test and validate the system prior to use in a forensic case,
in order to fully understand the extent of variation in perfor-
mance as a function of factors commonly encountered in case-
work. Further, of crucial concern to the analyst is the specific
voices being compared, thus understanding system performance
at a speaker-specific level is a priority, i.e., how does the system
perform for the specific type of speakers in this case? [7] and
[anon] begin to explore performance variability at an individ-
ual speaker-level, investigating why certain speakers may prove
more difficult to recognise than others. Both papers investigate
the phonetic content of recordings and how the inclusion or ex-
clusion of different types of speech sounds impacts ASR per-
formance (measured via by-speaker Cy).

1.3. This study

This study builds on [anon], which focused on speaker-level
variability in ASR performance and started to explore why some
speakers prove more challenging, namely by manipulating the
phonetic content of the samples. In the present study, we use the
same set of forensically-realistic recordings to explore speaker-
level variability in performance across four generations of an
ASR system based on different speaker modelling approaches.
The four approaches, from oldest to most recently developed,
are GMM-UBM, i-vector, x-vector and ECAPA-TDNN. We
first compare performance at an overall system-level, with a fo-
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cus on speaker discrimination. Then we compare performance
at the speaker level, exploring how consistently the approaches
perform for individual speakers. We conduct a detailed exami-
nation of the results, at both the level of the speaker and of indi-
vidual comparisons, in order to assess why some speakers con-
sistently prove challenging even to the best-performing speaker
modelling approach.

2. Methods
2.1. Data

The data for this study comes from GBR-ENG, a dataset of
forensically-realistic recordings collected and provided by the
UK Government. The full dataset contains 1,946 speakers (906
male, 1,040 female) of British English, with considerable vari-
ability in age, and regional and social background. There are
multiple samples for each speaker (mean = 10; 12,483 files in
total), typically recorded over a number of days. Samples con-
tain spontaneous conversational speech, have a duration of be-
tween 181 and 373 seconds, and are telephone recordings with
a mix of landline and mobile recordings.

2.2. Test and calibration sets

For this study we used the same subset of GBR-ENG as in
[anon], composed of 98 male speakers; these are divided into
a test set comprising 48 speakers with between 3 and 7 files
each (160 files total) and a calibration set comprising 50 speak-
ers with 2 files each. All recordings are mobile telephone calls
recorded on different days, with between 41 and 236 seconds of
net speech, and are relatively good quality in terms of signal-to-
noise ratio and little to no clipping.

2.3. Automatic speaker recognition system

Testing was carried out using VOCALISE 2021 (version

3.0.0.1746) [8], which has been widely used for forensic

speaker comparison casework. We used three approaches

to speaker modelling currently available within the software,

along with another comparably-trained approach:

1. GMM-UBM with Maximum A Posteriori adaptation

2. i-vector with dimension reduction via Linear Discriminant
Analysis (LDA) and scoring with a pre-trained Probabilistic
Linear Discriminant Analysis (PLDA) model

3. x-vector with dimension reduction via LDA and scoring with
a pre-trained PLDA model

4. ECAPA-TDNN with Cosine Distance scoring

The GMM-UBM and i-vector approaches are trained on the
same data, which is a subset of a larger dataset used to train both
the x-vector and ECAPA-TDNN approaches. High-level details
about training data can be found in [9].

For each approach, same-speaker (SS) and different-
speaker (DS) scores were computed for both the test and cal-
ibration sets. The calibration scores were used to train a logistic
regression model [10] and the coefficients were applied to the
test scores to produce calibrated logo likelihood ratios (LLRs).
There were a total of 200 SS LLRs and 12,520 DS LLRs per
approach. LLRs were used as the basis for evaluating perfor-
mance at a system- and speaker-level.

2.4. Evaluation

Overall performance was evaluated using Equal Error Rate
(EER) and Log Likelihood Ratio Cost Function (Cy) [11]. In

both cases, the closer the value to 0, the better the performance.
In the case of Cyy, a value of 1 or above means that the system
is not providing any useful speaker discriminatory information.
Cuir has two components: Cy,™n (a measure of discrimination
error, where 0 means perfect separation of SS and DS scores)
and Cpi (a measure of calibration error).

We use a combination of LLRs (including mean SS and DS
LLRs) and Cy,™" to evaluate performance at a speaker-level.
We opted for C;™™ since Cy,™ is volatile with a small num-
ber of files per speaker and given our interest in discrimination
rather than calibration. A Cy,™" of 0 means that perfect dis-
crimination can be achieved for that speaker with the optimally-
selected calibration data.

3. Results

3.1. Overall system performance

Table 1 shows the overall performance for each speaker mod-
elling approach. Major improvements are observed in both EER
and Cy; from GMM-UBM to i-vector and from i-vector to x-
vector. On our dataset, ECAPA-TDNN performs better than
i-vector but not as well as x-vector, with EER and Cj; values al-
most double the corresponding values for the x-vector approach.

Table 1: Overall performance of the four speaker modelling
approaches.

EER (%) | Cur | Cue™ | Cype™

GMM-UBM 44.5 0.97 0.92 0.05
i-vector 23.5 0.67 0.58 0.09
x-vector 3.0 0.13 0.10 0.03
ECAPA-TDNN 7.0 0.27 0.21 0.06

Table 2 shows the correlations between the uncalibrated
scores of the comparisons from one generation of speaker mod-
elling approach to the next, separated for SS and DS compar-
isons. Strong positive correlations are observed in every case
for SS comparisons, while moderate to strong correlations are
found for DS comparisons.

Table 2: Pearson’s correlation coefficients and p-values for
comparisons of raw scores of individual comparisons across
each approach and its successor, separated for same-speaker
(SS) and different-speaker (DS) comparisons.

Approach 1 Approach 2 r p
GMM-UBM i-vector 0.745 | <.0001
SS i-vector X-vector 0.742 | <.0001
x-vector ECAPA-TDNN | 0.760 | <.0001
GMM-UBM i-vector 0.834 | <.0001
DS i-vector X-vector 0.630 | <.0001
x-vector ECAPA-TDNN | 0.496 | <.0001

3.2. By-speaker performance

3.2.1. Speaker discrimination

Figure 1 tracks the by-speaker Cy,™" across the four speaker
modelling approaches. First, we focus on the three less recent
approaches (GMM-UBM to i-vector to x-vector). For all speak-
ers, Ci;™" decreases from one approach to the next, showing
that performance improves with newer generations of modelling

151
152
153
154
1565
156
157
158
159
160
161
162
163

164

165

166
167
168
169
170
17

172
173
174
175
176
177

178

179

180
181
182
183
184



185
186
187
188

189

191
192
193
194
195
196
197
198
199
200
201
202

203
204
205

207
208
209
210
211

approaches. The range of Cy,™™ across the speakers also de-
creases from GMM-UBM (0.97) to i-vector (0.62) to x-vector
(0.37), showing that overall performance also becomes more
consistent within a system.
Figure 1: By-speaker Cy,™™ across four different speaker mod-
elling approaches. Note that the y-axis is log o scaled to provide
better resolution at the lower end of the scale (particularly for
the x-vector and ECAPA-TDNN approaches).
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An optimal Ci:™™ of 0 was achieved for 1 speaker using

the GMM-UBM approach and 13 speakers using the i-vector
approach. The x-vector approach resulted in an EER of 0% and
a Cii™™ of 0 for 38 of the 48 speakers (79%). EER for the other
10 speakers ranged from 0.21% to 27.92% (0.21% to 2.87%
excluding speaker 244) and Cj,™™ ranged from 0.015 to 0.37.
We return to these speakers later.

ECAPA-TDNN did not outperform x-vector, despite being
the latest generation tested. An optimal Cp;;™™ of 0 was achieved
for 33 speakers (69%) by the ECAPA-TDNN approach; thus,
ECAPA-TDNN had perfect discrimination (Cnrmin =0) for 5
fewer speakers than x-vector. Cy,™" stayed the same for 35
speakers (73%) and increased (i.e., got worse) for 11 speakers
(23%). Only 2 speakers (4%) had a lower (i.e., better) Cy,™".

Table 3: Spearman’s rank correlation coefficients and p-values
for comparisons of by-speaker Cy,™" across each approach and
its successor.

Approach 1 Approach 2 p P

GMM-UBM i-vector 0.655 | <.0001
i-vector x-vector 0.482 <.001
X-vector ECAPA-TDNN | 0.799 | <.0001

The ranking of speakers within the group was highly cor-
related across the different approaches (see Table 3), particu-
larly across the GMM-UBM and i-vector approaches and the
x-vector and ECAPA-TDNN approaches. The slightly weaker
correlation between i-vector and x-vector is likely a result of the
large number of speakers for whom Cy,™" dropped to 0 when
using the x-vector approach. In general, then, if one generation
of speaker modelling works well for an individual speaker, the
next generation generally also works well for that speaker.

3.2.2. Log Likelihood Ratios

Figure 2 shows the mean same-speaker and different-speaker
LLRs for each individual speaker across the GMM-UBM, i-
vector and x-vector approaches. In general, LLRs become
stronger (i.e., further from 0) with regard to both SS and DS
comparisons from each approach to the next.

Figure 2: Mean same-speaker (SS) and different-speaker (DS)
log likelihood ratios (LLRs) for GMM-UBM, i-vector and x-
vector approaches.
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In every case, the DS LLRs increase in magnitude (to-
wards a larger negative value) from GMM-UBM to i-vector to
x-vector, demonstrating better speaker discrimination in newer
approaches. SS LLRs also tend to increase in magnitude (to-
wards a larger positive value), with a few exceptions from
GMM-UBM to i-vector at the bottom end of the distribution
and one exception from i-vector to x-vector.

The relationship between the x-vector and ECAPA-TDNN
approaches (not shown in Figure 2) was not as clear, though the
LLRs generally decreased in magnitude (i.e., got closer to 0)
from x-vector to ECAPA-TDNN for SS and/or DS comparisons.

3.3. By-file performance

For this part of the analysis, we focused on the results of the x-
vector approach as it outperformed the other methods both over-
all and at the speaker-level. There were 10 speakers for whom
the x-vector approach did not achieve perfect speaker discrim-
ination, i.e., their Ci™™ was greater than 0, which is the result
of overlap in the LLRs for the SS and DS comparisons involv-
ing each of these speakers. It was found that these speakers also
had low mean SS LLRs (ranging between -0.26 and 1.56), com-
pared with the mean SS LLRs for the other 38 speakers (ranging
between 0.91 and 2.98).

Inspection of the SS LLRs for these 10 speakers revealed
that 8 of them had what could be termed a problem file. These 8
speakers have 3 files in the test set and therefore 3 SS compari-
son pairs, i.e., A vs B, A vs C and B vs C. For these speakers, the
2 comparisons involving the problem file (A) produced consid-
erably lower LLRs than the comparison between B and C (see
Figure 3). These results suggest that the poorer performance
of these speakers is the consequence of the single problem file,
rather than an inherent speaker issue. We consider the potential
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causes of this in the discussion.

Figure 3: LLRs for same-speaker comparisons for 8 speakers
with Cy,™ above 0 (using the x-vector approach) with 1 prob-
lem file (A) out of 3.
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No problem file was found for the other 2 speakers (num-
bers 201 and 561; not shown in Figure 3), who have 5 and 4
files in the test set respectively and mean SS LLRs around 1.5,
which is higher than the mean SS LLRs of below 1 for the other
8 speakers. For these 2 speakers, examination of the DS LLRs
that overlap with the SS LLRs (i.e., those which cause the non-
perfect discrimination) shows that almost all of these DS com-
parisons are with a single speaker. For speaker 201, 3 out of 4
DS comparisons are with speaker 1811 and for speaker 561, 8
out of 9 DS comparisons are with speaker 1254. All LLRs for
these comparisons are greater than 0. These results show that
a large contributory factor to the poorer performance for these
2 speakers is the comparisons with a single speaker. The same
finding was also apparent for some of the other 8 speakers with
problem files, highlighting that poorer performance can have
multiple causes.

4. Discussion

Using our set of forensically-realistic recordings, improve-
ments in performance at both an overall system- and individ-
ual speaker-level were observed from GMM-UBM to i-vector
to x-vector; these results were expected given the major devel-
opments from one generation to the next. We also found that the
x-vector approach outperformed a newer generation of speaker
modelling, ECAPA-TDNN. However, the ECAPA-TDNN and
x-vector systems used in this study were trained with the same
data: all sampled at 8kHz and containing a significant quan-
tity of telephone speech, making it relatively matched to the
test conditions. Reference implementations of ECAPA-TDNN
shown to outperform x-vector, e.g. [4], have been trained with
speech sampled at 16kHz. We speculate that a combination of
narrow bandwidth and telephone test condition is responsible
for the more effective x-vector system in this study.

The analysis of individual speaker performance showed
general trends, revealed some differences in speaker behaviour
and highlighted speakers with poorer performance. The indi-
vidual speaker performance metrics (Cu,mi“, mean SS and DS
LLRs) provided useful insights into the variation found across
systems for individual speakers. However, they can still mask
details in the results for individual files which may allow some

of the differences in performance to be explained.

We concentrated our attention on the 10 speakers who were
not perfectly discriminated by the best performing x-vector sys-
tem. We found that 8 of the 10 speakers had a problem file
that caused weaker LLRs for SS comparisons involving that
file. Preliminary auditory and acoustic analysis of the files re-
vealed observable differences between the problem file (A) and
the other two files (B and C) for all 8 speakers. The differences
related to a range of technical factors (e.g. distance from mi-
crophone, background noise, attenuation of frequency bands),
speaker factors (e.g. voice quality) and stylistic factors (e.g.
increased vocal effort, pitch variability). These factors were
present (or absent) to a greater or lesser extent and in differ-
ent combinations across the problem files. If these factors are
the cause of the lower SS LLRs, then their number, interdepen-
dencies and potential to vary within recordings leads to a com-
plex situation. However, these findings are encouraging as they
show that some of the potential causes of poorer performance
can be readily observed in recordings. They are also amenable
to control, allowing their impact on performance to be tested.

The remaining 2 speakers did not have a problem file, but
their overlapping DS LLRs resulted almost exclusively from
multiple comparisons with only 1 other speaker. Preliminary
assessment of these files indicates some similarity in speaker-
related rather than technical factors, although not all compar-
isons between these speakers resulted in LLRs that overlap with
SS LLRs. A similar finding was also made for some of the other
8 speakers, which suggests that their poorer performance was
due to factors affecting both their SS and DS comparisons.

The findings presented clearly demonstrate that system-
level performance metrics mask a wealth of detail about the be-
haviour of speakers in ASR systems. Even considering perfor-
mance at a speaker-level can hide valuable insights which are
only revealed when looking at the file-level behaviour. These
findings clearly support the calls made at the 2024 Odyssey
workshop for more detailed investigations into the factors af-
fecting individual performance. Future investigations should
focus on disentangling and objectively measuring the factors
which influence individual speaker performance.

5. Conclusion

The novel approach we have taken to evaluating ASR per-
formance provides insights into variability both between and
within different speaker modelling approaches. Performance
is generally shown to improve over generations, which is re-
flected in both overall performance metrics and speaker-level
trends (i.e. good speakers remain good and poor speakers re-
main poor). This work goes beyond the findings of [anon]
and suggests that variability in performance is related to both
speaker- and file-level factors. While speaker factors, e.g. the
phonetic make-up of samples, may still contribute to a particular
file proving problematic, the specific cause is likely a complex
combination of technical, speaker and stylistic factors. Under-
standing individual speaker and file behaviour will ultimately
allow us to predict what types of behaviour are more likely to
influence system performance, which in turn will assist analysts
using ASR systems in forensic voice comparison cases. In fu-
ture work, we will begin to disentangle the complex interaction
of factors contributing to certain files or speakers proving prob-
lematic to the ASR system by running a series of experiments
using controlled data to explore, for example, the effects of vo-
cal conditions combined with technical factors to understand
their impact on performance.
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