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Abstract

In data-driven forensic voice comparison (FVC), empirical
testing of a system is an essential step to demonstrate validity
and reliability. Numerous studies have focused on improving
system validity, while studies of reliability are comparatively
limited. In the present study, simulated scores were generated
from i-vector and GMM-UBM automatic speaker recognition
systems using real speech data to demonstrate the variability
in system reliability as a function of score skewness, sample
size, and calibration methods (logistic regression or a
Bayesian model). Using logistic regression with small samples
of skewed scores, Cir range is 1.3 for the i-vector system and
0.69 for the GMM-UBM system. When scores follow a
normal distribution, Cy ranges reduce to 0.49 (i-vector) and
0.69 (GMM-UBM). Using the Bayesian model, the Cy; ranges
are 0.31 and 0.60 for i-vector and GMM-UBM systems
respectively when scores are skewed, and the Cir range
remains stable when scores follow a normal distribution
irrespective of sample size. The results suggests that score
skewness has a substantial effect on system reliability. With
this in mind, in FVC it may be preferable to use an older
generation of system which produces less variable results, but
slightly weaker discrimination, especially when sample size is
small.

Index Terms: forensic voice comparison, likelihood-ratio,
logistic regression, Bayesian model, uncertainty

1. Introduction

1.1. Likelihood ratios and validation

Forensic voice comparison (FVC) typically involves the
analysis of two speech samples; one from a known suspect
and the other from an unknown offender. There is now an
overwhelming consensus that experts should express their
conclusions in FVC cases in the form of a likelihood ratio
(LR), which is a measure of the strength of the voice evidence
in light of the competing propositions of the prosecution and
defence. In FVC, the expert needs to employ a system, defined
broadly as the particular courses of action that are used to
compare the suspect and offender samples and arrive at a
conclusion [1]. For an end user (e.g. jury and/or the court) to
be able to interpret that conclusion provided by the expert
appropriately, it is essential to understand the validity (i.e.,
how well the system performs the task that it is designed to do)
and reliability (i.e., whether the system would yield the same
result if the analysis were repeated) of the system used. There
is now considerable regulatory pressure on experts to validate
systems under conditions reflective of forensic casework.
Within exclusively data-driven, quantitative approaches to
FVC (e.g. using automatic speaker recognition (ASR)

systems), there are established procedures to empirically
validating methods using the LR-based framework. This
normally involves three sets of data (i.e., training, test and
reference) and two stages (i.e., feature-to-score and score-to-
LR)[1].

1.2. Understanding uncertainty

Any approach to FVC involves a series of processes and
decisions which can, in principle, introduce uncertainty into
the system, affecting both the resulting LR in the case and the
measure of system validity. The priorities for forensics differ
from those of other applications of speaker recognition.
Within the field of speaker recognition, systems are evaluated
and compared using overall measures of performance on
benchmark datasets, which drive paradigm shifts in the
algorithms used (e.g. from GMM-UBM to i-vector to x-
vector). Conversely, in our opinion, measuring and ultimately
attempting to minimise uncertainty (at every level within a
system) should be the principle focus of forensic experts, as
this directly impacts of the probability of miscarriages of
justice. Thus, a system which produces more consistent results
(i.e. one that has less uncertainty in its output) should be
preferred over a system which is less consistent, even if, on
average, the more consistent system produces poorer
performance — it is the variability that matters, not the mean.
The choice of system itself may depend on the specific voices
under analysis in a case.

Numerous FVC studies have explored factors which
introduce uncertainty into the process and affect system
validity and reliability, e.g., sample size [2], channel mismatch
[3], sampling variability [4]-[6], accent-mismatch [7]. Various
techniques have been proposed to reduce the degree of
uncertainty at both the feature-to-score and score-to-LR stages
to improve system validity and reliability, e.g., using cepstral-
mean subtraction [8] for channel mismatch compensation,
obtaining reference data that is better matched for accent [9],
and using recordings with conditions reflecting those of a real
FVC case [10]. Sample size is a common factor that affects
system validity and reliability especially when estimating
within speaker variability, i.e. the distribution of within
speaker variability is likely to be heavy-tailed (i.e., skewed)
and less likely to follow normal distribution when the sample
size is small. [11] proposed a method/framework for
incorporating uncertainty into LR computation in the feature
space using glass fragment data. They used a heavy-tailed
Student’s t distribution to model within-source variability
showing that their proposed models outperformed MVKD [12]
model which uses Gaussian distributions to model within-
source variability. However, the challenges of reducing
uncertainty in the feature space are that the feature space is
often complex and highly multidimensional, and thus requires
models with much high number of parameters. In comparison,



reducing uncertainty in the score space is less complex in
terms of data dimensionality (using univariate score data) and
the number of parameters required for the model is typically
relatively low. A range of calibration methods have been
proposed to incorporate uncertainty into LR computation at
the score-to-LR, e.g., Bayesian model [13], empirical lower
and upper bound [14], regularised logistic regression [14].
[16] used simulated scores to test the effectiveness of these
calibration methods showing that Bayesian model [13]
outperformed logistic regression in terms of system reliability
when sample size is small and scores are skewed. However,
they only compared the performance of different calibration
methods using skewed scores and did not examine the extent
uncertainty is affected when comparing skewed scores with
normally distributed scores. Moreover, they simulated scores
in [16] were based on a linguistic-phonetic system using
MVKD, which is likely to have poorer overall performance
than ASR systems using MFCCs.

1.3. The current study

The current study investigates the feasibility of using the
Bayesian calibration model [13] within the score space as a
means of reducing uncertainty introduced by sample size and
score skewness. This is because the Bayesian model has
previously yielded promising performance when sample size
is small [16]. Moreover, it has been shown that scores are less
likely to follow normal distribution when sample size is
limited [4, 15, 16]. We also test different ASR systems
(GMM-UBM, i-vector-PLDA) as different systems are likely
to produce scores which are distributed in different ways and
thus are likely to have different levels of uncertainty within
them. Training and test scores used in the current study were
simulated using score distribution parameters obtained from
[10, 15] where the original scores were generated using
MFCC and deltas with i-vector PLDA and GMM-UBM
systems respectively. In our study, Logistic regression [17] is
used to serve as a baseline model as it is one of the most
widely used calibration methods for ASR systems. The
baseline, logistic-regression calibration results were then
compared with results using Bayesian calibration and
evaluated in terms of both discrimination (mean Cy) and
uncertainty (Cr range).

2. Method

2.1. Score simulation

Scores were simulated based on score distribution parameters
obtained from [10, 15]. Each score indicates the similarity and
typicality between SS and DS comparisons, and equivalent
scores were simulated from both an i-vector system and
GMM-UBM system. We recognise that neither of these
systems are currently state-of-the-art; however, the point here
is to compare relative rather than absolute patterns, focusing
principally on uncertainty rather than discrimination as well as
the interaction between the two. Given the priorities in
forensics, in some circumstances, it may be preferable to use
older system that produces less variability (i.e. less
uncertainty) rather than the state-of-the-art.

Table 1 shows the score distribution parameters, i.e.,
skewness, kurtosis, mean and standard deviation. For both
GMM-UBM and i-vector approaches, SS and DS scores are
skewed, with SS scores having higher skewness than DS
scores. Since both SS and DS scores are skewed to some
extent, skew-t (ST) [18] distributions were chosen for

simulation using the rst () function from the R (R core team,
2020) package sn [19]. In order to investigate if overall
performance would be affected when scores were skewed
(comparing with normal distributions), the skewness for both
SS and DS scores were also changed to 0 (i.e., normal
distribution) while the kurtosis, mean and standard deviation
were kept fixed. Figure 1 shows examples of simulated i-
vector (top panels) and GMM-UBM (bottom panels) scores by
varying score skewness.

Table 1: Score distribution parameters from an i-vector PLDA
system using real speech data from 111 male Australian

speakers.
i-vector GMM-UBM
SS DS SS DS
Skewness -1.36 -0.69 0.56 | -0.31
Kurtosis 8.47 3.64 4.06 | 3.99
Mean -56.78 | -223.23 | 0.04 | -0.04
Standard deviation 34.79 83.50 0.04 | 0.04

SS skewness = -1.36, DS skewness= -0.69 SS skewness = 0, DS skewness= 0
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Figure 1: Examples of simulated i-vector (top panel) and
GMM-UBM (bottom panels) scores using parameters from
Table 1, sample size = 1000 in each of the SS and DS scores.
Blue dashed lines indicate the mean.

To account for sample size, training and test scores were
simulated with randomly selected sets of speakers increasing
from 20 to 100 in 10-speaker increments, i.e., the SS and DS
scores vary from 20 to 100 and 380 to 9900 for training and
test data respectively. The simulated scores were calibrated
using logistic regression and a Bayesian model respectively.
Training and test scores were also simulated and calibrated
100 times per sample size to take the effect of sampling
variability into consideration. The overall performance was
evaluated using the mean (overall discrimination) and range
(overall variability) of the Cy;s across the 100 replications. A
Ciir lower than 1 indicates that the system is capturing useful
information, and systems with better overall performance
should yield both lower Cyi; mean and range.

2.2. Calibration

Logistic regression is one of the most widely used calibration
methods in FVC and has been employed widely in previous
studies [3, 20-22], and it has been suggested that logistic
regression is more robust to violations of the assumption of
normality [1]. For these reasons, it is used as a baseline
condition in our current experiments. Logistic regression
involves fitting a sigmoidal curve is fitted to SS and DS
training scores using maximum likelihood function in
probability space[l], [23]. The sigmoidal curve is then



transformed from the probability space to the log-odds space
to generate the linear relationship between SS and DS scores.
Once the linear relationship is obtained, the shift and scale
values (i.e., regressions coefficients) can then be added and
multiplied to the test scores respectively to generate the
calibrated LRs.

The Bayesian model involves the use of priors (i.e.
hyperparameters) to reduce the magnitude of the LRs when
uncertainty is high [13, 15]. Note that the priors (i.e.,
hyperparameters) here are those used for LR computation, not
the prior probability in Bayes’ theorem as applied to the case
itself. Those hyperparameters, i.e., the prior belief and the
strength of the belief for the mean and variance of the training
scores, need to be specified. However, to our knowledge, no
study has investigated the use of different hyperparameters in
FVC and more importantly the rationale behind the usage of
different hyperparameters. Therefore, as in [15], Jeffreys
reference uninformative priors were used. Moreover, it has
been shown that uninformative priors yield more constrained
Bayes factors (BF, the Bayesian counterpart of the frequentist
LR) than informative priors [24]. Once the hyperparameters
are specified, training scores are used to train the Bayesian
model, and the likelihood of the Bayesian model is evaluated
using the test scores [13] using Equation 1.

n+

AB = tn_l(xm,n—_i{fz) Equation 1

Where t is a t distribution, n is the sample size, x is the test
score, I and 62 are the sample mean and variance of the
training score. The calculation of BF is then the ratio between
the likelihood of the Bayesian models evaluated using test
scores (Equation 2).
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[15] pointed out that monotonicity is not guaranteed if the
¢t distribution is used for both numerator and denominator.
Therefore, certain constraints need to be imposed to reduce the
extent of non-monotonicity. We then follow [15] and use
pooled sample variance (62), rather than the variance of only
training scores. The degrees of freedom (ng+ny, — 2) are
therefore adjusted to take the pooled variance calculation into
consideration and the 72 is the sum of SS and DS samples
divided by 2. The implementation of calibration methods was
conducted using a Matlab script [15].

[15] pointed out that monotonicity is not guaranteed if the
¢t distribution is used for both numerator and denominator.
Therefore, certain constraints need to be imposed to reduce the
extent of non-monotonicity. We then follow [15] and use
pooled sample variance (62), rather than the variance of only
training scores. The degrees of freedom (ng+ny, — 2) are
therefore adjusted to take the pooled variance calculation into
consideration and the 72 is the sum of SS and DS samples
divided by 2. The implementation of calibration methods was
conducted using a Matlab script [15].

3. Results

Figure 2 shows the Ci mean (dots; discrimination) and range
(lines; uncertainty) across the 100 replications for different
sample sizes, score skewness and calibration methods
respectively. The x-axis represents the number of training and
test speakers and the y-axis shows Ci. The GMM-UBM
results are in red and the i-vector results are in black.
Predictably, average Ci; values are lower across all sample

size conditions for the i-vector system, compared with the
GMM-UBM system. However, there are a series of interesting
patterns related to uncertainty (Cy range) meaning that the i-
vector system is not necessarily the optimal choice for FVC.
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Figure 2: Cy- mean and range as a function of score skewness,
sample size and calibration methods.

3.1 Baseline systems with logistic regression

When scores are sampled from skewed distributions (i.e. using
parameters from score distributions actually output by these
ASR systems) and logistic regression is used for calibration
(Figure 2. (a)), as is the typical situation in current FVC
systems, the Ci; range fluctuates substantially for both GMM-
UBM and i-vector systems, especially when sample size is
small. The i-vector system produces a very high Ci, range
with only 20 speakers, despite producing lower average Ci.
This is driven by a small number of replications that produce
very high Gy when sample size is low. This is problematic for
FVC as it means there is much greater uncertainty overall for
the i-vector system despite better levels of average
discrimination, compared with the GMM-UBM system. For
both i-vector and GMM-UBM systems, Ciir range decreases as
sample size increases. After the inclusion of 40 speakers, the
Ciir range for the i-vector system is lower than for the GMM-
UBM system. The mean Cjy; also reduces from 0.48 to 0.40
between 20 and 100 speakers for GMM-UBM while it remains
at around 0.3 for i-vector.

The Ci ranges for both i-vector and GMM-UBM systems
are less fluctuating as a function of sample size when scores
are sampled from normal distributions (Figure 2. (b)), rather
than the skewed distributions (Figure 2. (a)). The Ci, range
varies from 0.49 to 0.18 (i-vector) and from 0.69 to 0.29
(GMM-UBM) when sample sizes increase from 20 to 100
speakers. This indicates that score skewness has a marked



effect on system reliability, such that the greater the skew in
the underlying score distributions, the greater the uncertainty,
when using logistic regression (especially when sample size is
small). This would also explain the pattern in Figure 2 (a),
since the GMM-UBM system produces inherently less skewed
scores than the i-vector system.

3.2. Systems with Bayesian model

Using the Bayesian calibration model on the skewed data
(Figure 2. (c)), less fluctuation and lower absolute values for
Ciir range are observed across different sample sizes compared
with using logistic regression (Figure 2. (a)). Again, Cy range
decreases as sample size increases. Cj range varies from 0.60
to 0.31 and from 0.31 to 0.15 for GMM-UBM and i-vector
systems respectively when sample size increases from 20 to
100 speakers. Overall, the i-vector system consistently
produced the lowest Ci; mean and range, compared with
GMM-UBM. The trade-off in terms of improved and less
variable Cy; range is a slight increase in Cy; mean (i.e. a loss in
discrimination) compared with logistic regression. When
scores are sampled from normal distributions (Figure 2. (d)),
the Cir range (0.22 to 0.19) for the i-vector system shows less
fluctuation compared with the skewed scores. The Cj range
for the i-vector system remains lower than 0.20 when the
sample size is over 40 speakers; however, the difference
between the Cii fluctuations in the Figure 2. (c) and Figure 2.
(d) is very small. Similarly, there is little difference between
the Cyr range from the GMM-UBM system using normally
distributed scores (Ciir range = ca. 0.59 to 0.30; Figure 2. (d))
and those using skewed scores (Ci range = ca. 0.60 to 0.31;
Figure 2. (¢)). Irrespective of the score skewness, the mean Ci;
values remain stable across different sample sizes for both
GMM-UBM (mean Cj; = ca. 0.48) and i-vector mean (Cy; =
ca. 0.38) systems.

4. Discussion

4.1 Baseline system

The results show that score skewness has a more marked
effect on system reliability than on system validity. When
sample size is small and logistic regression is used, the Cy,
variability is high for both systems (Figure 2. (a) and (b)), but
especially for the i-vector system. For example, the Ci, range
in the i-vector system is almost 1.3 when scores are skewed
(Figure 2. (a)) and 20 speakers are used. However, Cy;range is
around 0.5 with the same sample size (i.e., 20 speakers) when
scores follow a normal distribution (Figure 2. (b)). Meanwhile,
score skewness seems to have a less marked effect on system
reliability for the GMM-UBM system when sample size is
small. This is principally because GMM-UBM produced less
skewed scores (Table 1).

Within calibration methods, mean system validity (mean
Ciir) stays stable regardless of score skewness and sample size.
This is unsurprising because system validity is mostly
dependent on the amount of overlap between SS and DS score
distributions which is depend on the distance between the
mean of SS and DS score distributions as well as the variance.
Since skewness was the only parameter adjusted in the current
study, the mean system validity should not be substantially
affected across normally distributed and skewed scores.

4.2 Bayesian calibration as a solution

The results in Figure 2 (c) and (d) show that Bayesian
calibration improves system reliability considerably when
scores are skewed (as is commonly found in the real world).

Using scores for 20 speakers simulated from the i-vector
system and the Bayesian calibration model, the Cj range is
just above 0.3 (Figure 2 (c)) compared with 1.3 (Figure 2 (a))
for logistic regression. Cyr range further decreases when more
speakers are used. For scores simulated from the GMM-UBM
system, the Bayesian calibration does not seem to improve
system reliability as much it does in the i-vector system.
Figure 2 (c) and (d) shows that score skewness has much less
effect on system reliability using Bayesian model compared
with the use of logistic regression for the i-vector system, i.e.,
the differences between the Cy range (black lines in Figure 2
(c) and (d)) are less than 0.1 across different sample sizes. For
the GMM-UBM system, score skewness seems to have less
effect on system stability when 40 or more speakers are used,
i.e., the difference between the Cy; range values in Figure 2 (c)
and (d) (red lines) become smaller when 40 or more speakers
are used.

The mean Cy,s obtained using Bayesian calibration do not
fluctuate considerably when scores are sampled from skewed
and normal distributions respectively (Figure 2. (¢) and (d)).
This is similar to the pattern observed in mean Cy,s using
logistic regression (Figure 2 (a) and (b)). However, for the i-
vector system, the mean Cj is slightly higher using Bayesian
calibration (mean Cy, = 0.38) than using logistic regression
(mean Cy = 0.30), while the mean Cj; remains stable
irrespective of calibration methods for GMM-UBM. It is
therefore important for experts to consider what they consider
a ‘low enough’ mean Cj; to be in making decision about
which system to use in a forensic case and the potential trade-
offs between discriminability and uncertainty (see [25]).

5. Conclusion

The current study investigated the effect of score skewness
and sample size on overall performance of different types of
ASR systems and the feasibility of reducing uncertainty at the
score space via Bayesian calibration. On the surface, it seems
that using Bayesian model can effectively reduce the level of
uncertainty and fluctuation in overall performance caused by
score skewness. The trade-off is a slight increase in mean Ci.
Taken together, our results indicate that, in the forensic
context, it is not the case that the modern ‘state-of-art’ system
which is capable of the best validity is necessarily the optimal
choice. Rather, this choice is dependent on sample size, score
skewness, and the choice of calibration method (likely
amongst of considerations).

Future work should consider the effects of different priors
on Bayesian calibration. The Jefferys prior used in the current
study is a member of the beta distribution (i.e., continuous
distributions with intervals between 0 and 1). Similarly, the
Haldane (i.e., @ =0 ) and Laplace (i.e., a =1) priors are also
members of the beta distributions, and [13] pointed out that
Haldane prior is more appropriate for evaluating DNA
evidence. A further empirical question then would be which
prior gives the best overall performance; however, a scientific
question would be why certain prior yields the best overall
performance and the rationale behind the choice of different
priors for LR computation, which needs to be explored more
in future studies.
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