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Abstract 
In data-driven forensic voice comparison (FVC), empirical 
testing of a system is an essential step to demonstrate validity 
and reliability. Numerous studies have focused on improving 
system validity, while studies of reliability are comparatively 
limited. In the present study, simulated scores were generated 
from i-vector and GMM-UBM automatic speaker recognition 
systems using real speech data to demonstrate the variability 
in system reliability as a function of score skewness, sample 
size, and calibration methods (logistic regression or a 
Bayesian model). Using logistic regression with small samples 
of skewed scores, Cllr range is 1.3 for the i-vector system and 
0.69 for the GMM-UBM system. When scores follow a 
normal distribution, Cllr ranges reduce to 0.49 (i-vector) and 
0.69 (GMM-UBM). Using the Bayesian model, the Cllr ranges 
are 0.31 and 0.60 for i-vector and GMM-UBM systems 
respectively when scores are skewed, and the Cllr range 
remains stable when scores follow a normal distribution 
irrespective of sample size. The results suggests that score 
skewness has a substantial effect on system reliability. With 
this in mind, in FVC it may be preferable to use an older 
generation of system which produces less variable results, but 
slightly weaker discrimination, especially when sample size is 
small. 

Index Terms: forensic voice comparison, likelihood-ratio, 
logistic regression, Bayesian model, uncertainty 

1. Introduction 
1.1. Likelihood ratios and validation 
Forensic voice comparison (FVC) typically involves the 
analysis of two speech samples; one from a known suspect 
and the other from an unknown offender. There is now an 
overwhelming consensus that experts should express their 
conclusions in FVC cases in the form of a likelihood ratio 
(LR), which is a measure of the strength of the voice evidence 
in light of the competing propositions of the prosecution and 
defence. In FVC, the expert needs to employ a system, defined 
broadly as the particular courses of action that are used to 
compare the suspect and offender samples and arrive at a 
conclusion [1]. For an end user (e.g. jury and/or the court) to 
be able to interpret that conclusion provided by the expert 
appropriately, it is essential to understand the validity (i.e., 
how well the system performs the task that it is designed to do) 
and reliability (i.e., whether the system would yield the same 
result if the analysis were repeated) of the system used. There 
is now considerable regulatory pressure on experts to validate 
systems under conditions reflective of forensic casework. 
Within exclusively data-driven, quantitative approaches to 
FVC (e.g. using automatic speaker recognition (ASR) 

systems), there are established procedures to empirically 
validating methods using the LR-based framework. This 
normally involves three sets of data (i.e., training, test and 
reference) and two stages (i.e., feature-to-score and score-to-
LR) [1].  

1.2. Understanding uncertainty 
Any approach to FVC involves a series of processes and 
decisions which can, in principle, introduce uncertainty into 
the system, affecting both the resulting LR in the case and the 
measure of system validity. The priorities for forensics differ 
from those of other applications of speaker recognition. 
Within the field of speaker recognition, systems are evaluated 
and compared using overall measures of performance on 
benchmark datasets, which drive paradigm shifts in the 
algorithms used (e.g. from GMM-UBM to i-vector to x-
vector). Conversely, in our opinion, measuring and ultimately 
attempting to minimise uncertainty (at every level within a 
system) should be the principle focus of forensic experts, as 
this directly impacts of the probability of miscarriages of 
justice. Thus, a system which produces more consistent results 
(i.e. one that has less uncertainty in its output) should be 
preferred over a system which is less consistent, even if, on 
average, the more consistent system produces poorer 
performance – it is the variability that matters, not the mean. 
The choice of system itself may depend on the specific voices 
under analysis in a case.  

Numerous FVC studies have explored factors which 
introduce uncertainty into the process and affect system 
validity and reliability, e.g., sample size [2], channel mismatch 
[3], sampling variability [4]–[6], accent-mismatch [7]. Various 
techniques have been proposed to reduce the degree of 
uncertainty at both the feature-to-score and score-to-LR stages 
to improve system validity and reliability, e.g., using cepstral-
mean subtraction [8] for channel mismatch compensation, 
obtaining reference data that is better matched for accent [9], 
and using recordings with conditions reflecting those of a real 
FVC case [10]. Sample size is a common factor that affects 
system validity and reliability especially when estimating 
within speaker variability, i.e. the distribution of within 
speaker variability is likely to be heavy-tailed (i.e., skewed) 
and less likely to follow normal distribution when the sample 
size is small. [11] proposed a method/framework for 
incorporating uncertainty into LR computation in the feature 
space using glass fragment data. They used a heavy-tailed 
Student’s t distribution to model within-source variability 
showing that their proposed models outperformed MVKD [12] 
model which uses Gaussian distributions to model within-
source variability. However, the challenges of reducing 
uncertainty in the feature space are that the feature space is 
often complex and highly multidimensional, and thus requires 
models with much high number of parameters. In comparison, 



reducing uncertainty in the score space is less complex in 
terms of data dimensionality (using univariate score data) and 
the number of parameters required for the model is typically 
relatively low. A range of calibration methods have been 
proposed to incorporate uncertainty into LR computation at 
the score-to-LR, e.g., Bayesian model [13], empirical lower 
and upper bound [14], regularised logistic regression [14]. 
[16] used simulated scores to test the effectiveness of these 
calibration methods showing that Bayesian model [13] 
outperformed logistic regression in terms of system reliability 
when sample size is small and scores are skewed. However, 
they only compared the performance of different calibration 
methods using skewed scores and did not examine the extent 
uncertainty is affected when comparing skewed scores with 
normally distributed scores. Moreover, they simulated scores 
in [16] were based on a linguistic-phonetic system using 
MVKD, which is likely to have poorer overall performance 
than ASR systems using MFCCs.   

1.3. The current study 

The current study investigates the feasibility of using the 
Bayesian calibration model [13] within the score space as a 
means of reducing uncertainty introduced by sample size and 
score skewness. This is because the Bayesian model has 
previously yielded promising performance when sample size 
is small [16]. Moreover, it has been shown that scores are less 
likely to follow normal distribution when sample size is 
limited [4, 15, 16]. We also test different ASR systems 
(GMM-UBM, i-vector-PLDA) as different systems are likely 
to produce scores which are distributed in different ways and 
thus are likely to have different levels of uncertainty within 
them. Training and test scores used in the current study were 
simulated using score distribution parameters obtained from 
[10, 15] where the original scores were generated using 
MFCC and deltas with i-vector PLDA and GMM-UBM 
systems respectively. In our study, Logistic regression [17] is 
used to serve as a baseline model as it is one of the most 
widely used calibration methods for ASR systems. The 
baseline, logistic-regression calibration results were then 
compared with results using Bayesian calibration and 
evaluated in terms of both discrimination (mean Cllr) and 
uncertainty (Cllr range). 

2. Method 
2.1. Score simulation  
Scores were simulated based on score distribution parameters 
obtained from [10, 15]. Each score indicates the similarity and 
typicality between SS and DS comparisons, and equivalent 
scores were simulated from both an i-vector system and 
GMM-UBM system. We recognise that neither of these 
systems are currently state-of-the-art; however, the point here 
is to compare relative rather than absolute patterns, focusing 
principally on uncertainty rather than discrimination as well as 
the interaction between the two. Given the priorities in 
forensics, in some circumstances, it may be preferable to use 
older system that produces less variability (i.e. less 
uncertainty) rather than the state-of-the-art. 

Table 1 shows the score distribution parameters, i.e., 
skewness, kurtosis, mean and standard deviation. For both 
GMM-UBM and i-vector approaches, SS and DS scores are 
skewed, with SS scores having higher skewness than DS 
scores. Since both SS and DS scores are skewed to some 
extent, skew-t (ST) [18] distributions were chosen for 

simulation using the rst() function from the R (R core team, 
2020) package sn [19]. In order to investigate if overall 
performance would be affected when scores were skewed 
(comparing with normal distributions), the skewness for both 
SS and DS scores were also changed to 0 (i.e., normal 
distribution) while the kurtosis, mean and standard deviation 
were kept fixed. Figure 1 shows examples of simulated i-
vector (top panels) and GMM-UBM (bottom panels) scores by 
varying score skewness.  

Table 1: Score distribution parameters from an i-vector PLDA 
system using real speech data from 111 male Australian 

speakers. 
 i-vector GMM-UBM 
 SS DS SS DS 
Skewness -1.36 -0.69 0.56 -0.31 
Kurtosis 8.47 3.64 4.06 3.99 
Mean -56.78 -223.23 0.04 -0.04 
Standard deviation 34.79 83.50 0.04 0.04 

 

 

Figure 1: Examples of simulated i-vector (top panel) and 
GMM-UBM (bottom panels) scores using parameters from 

Table 1, sample size = 1000 in each of the SS and DS scores. 
Blue dashed lines indicate the mean. 

To account for sample size, training and test scores were 
simulated with randomly selected sets of speakers increasing 
from 20 to 100 in 10-speaker increments, i.e., the SS and DS 
scores vary from 20 to 100 and 380 to 9900 for training and 
test data respectively. The simulated scores were calibrated 
using logistic regression and a Bayesian model respectively. 
Training and test scores were also simulated and calibrated 
100 times per sample size to take the effect of sampling 
variability into consideration. The overall performance was 
evaluated using the mean (overall discrimination) and range 
(overall variability) of the Cllrs across the 100 replications. A 
Cllr lower than 1 indicates that the system is capturing useful 
information, and systems with better overall performance 
should yield both lower Cllr mean and range. 

2.2. Calibration  
Logistic regression is one of the most widely used calibration 
methods in FVC and has been employed widely in previous 
studies [3, 20–22], and it has been suggested that logistic 
regression is more robust to violations of the assumption of 
normality [1]. For these reasons, it is used as a baseline 
condition in our current experiments. Logistic regression 
involves fitting a sigmoidal curve is fitted to SS and DS 
training scores using maximum likelihood function in 
probability space[1], [23]. The sigmoidal curve is then 



transformed from the probability space to the log-odds space 
to generate the linear relationship between SS and DS scores. 
Once the linear relationship is obtained, the shift and scale 
values (i.e., regressions coefficients) can then be added and 
multiplied to the test scores respectively to generate the 
calibrated LRs.   

The Bayesian model involves the use of priors (i.e. 
hyperparameters) to reduce the magnitude of the LRs when 
uncertainty is high [13, 15]. Note that the priors (i.e., 
hyperparameters) here are those used for LR computation, not 
the prior probability in Bayes’ theorem as applied to the case 
itself. Those hyperparameters, i.e., the prior belief and the 
strength of the belief for the mean and variance of the training 
scores, need to be specified. However, to our knowledge, no 
study has investigated the use of different hyperparameters in 
FVC and more importantly the rationale behind the usage of 
different hyperparameters. Therefore, as in [15], Jeffreys 
reference uninformative priors were used. Moreover, it has 
been shown that uninformative priors yield more constrained 
Bayes factors (BF, the Bayesian counterpart of the frequentist 
LR) than informative priors [24]. Once the hyperparameters 
are specified, training scores are used to train the Bayesian 
model, and the likelihood of the Bayesian model is evaluated 
using the test scores [13] using Equation 1.  

!! = #"#$(%|µ(	,
"%$
"#$+	,

&)                                           Equation 1                                                                    

Where t is a t distribution, n is the sample size, x is the test 
score, µ(  and +( 2 are the sample mean and variance of the 
training score. The calculation of BF is then the ratio between 
the likelihood of the Bayesian models evaluated using test 
scores (Equation 2). 
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[15] pointed out that monotonicity is not guaranteed if the 
t distribution is used for both numerator and denominator. 
Therefore, certain constraints need to be imposed to reduce the 
extent of non-monotonicity. We then follow [15] and use 
pooled sample variance (+(2), rather than the variance of only 
training scores. The degrees of freedom (544+554 − 2) are 
therefore adjusted to take the pooled variance calculation into 
consideration and the 59  is the sum of SS and DS samples 
divided by 2. The implementation of calibration methods was 
conducted using a Matlab script [15].  

[15] pointed out that monotonicity is not guaranteed if the 
t distribution is used for both numerator and denominator. 
Therefore, certain constraints need to be imposed to reduce the 
extent of non-monotonicity. We then follow [15] and use 
pooled sample variance (+(2), rather than the variance of only 
training scores. The degrees of freedom (544+554 − 2) are 
therefore adjusted to take the pooled variance calculation into 
consideration and the 59  is the sum of SS and DS samples 
divided by 2. The implementation of calibration methods was 
conducted using a Matlab script [15]. 

3. Results 
Figure 2 shows the Cllr mean (dots; discrimination) and range 
(lines; uncertainty) across the 100 replications for different 
sample sizes, score skewness and calibration methods 
respectively. The x-axis represents the number of training and 
test speakers and the y-axis shows Cllr. The GMM-UBM 
results are in red and the i-vector results are in black. 
Predictably, average Cllr values are lower across all sample 

size conditions for the i-vector system, compared with the 
GMM-UBM system. However, there are a series of interesting 
patterns related to uncertainty (Cllr range) meaning that the i-
vector system is not necessarily the optimal choice for FVC. 

 
Figure 2: Cllr mean and range as a function of score skewness, 

sample size and calibration methods. 
3.1 Baseline systems with logistic regression 
When scores are sampled from skewed distributions (i.e. using 
parameters from score distributions actually output by these 
ASR systems) and logistic regression is used for calibration 
(Figure 2. (a)), as is the typical situation in current FVC 
systems, the Cllr range fluctuates substantially for both GMM-
UBM and i-vector systems, especially when sample size is 
small. The i-vector system produces a very high Cllr range 
with only 20 speakers, despite producing lower average Cllr. 
This is driven by a small number of replications that produce 
very high Cllr when sample size is low. This is problematic for 
FVC as it means there is much greater uncertainty overall for 
the i-vector system despite better levels of average 
discrimination, compared with the GMM-UBM system. For 
both i-vector and GMM-UBM systems, Cllr range decreases as 
sample size increases. After the inclusion of 40 speakers, the 
Cllr range for the i-vector system is lower than for the GMM-
UBM system. The mean Cllr also reduces from 0.48 to 0.40 
between 20 and 100 speakers for GMM-UBM while it remains 
at around 0.3 for i-vector.  

The Cllr ranges for both i-vector and GMM-UBM systems 
are less fluctuating as a function of sample size when scores 
are sampled from normal distributions (Figure 2. (b)), rather 
than the skewed distributions (Figure 2. (a)). The Cllr range 
varies from 0.49 to 0.18 (i-vector) and from 0.69 to 0.29 
(GMM-UBM) when sample sizes increase from 20 to 100 
speakers. This indicates that score skewness has a marked 



effect on system reliability, such that the greater the skew in 
the underlying score distributions, the greater the uncertainty, 
when using logistic regression (especially when sample size is 
small). This would also explain the pattern in Figure 2 (a), 
since the GMM-UBM system produces inherently less skewed 
scores than the i-vector system. 

3.2. Systems with Bayesian model  
Using the Bayesian calibration model on the skewed data 
(Figure 2. (c)), less fluctuation and lower absolute values for 
Cllr range are observed across different sample sizes compared 
with using logistic regression (Figure 2. (a)). Again, Cllr range 
decreases as sample size increases. Cllr range varies from 0.60 
to 0.31 and from 0.31 to 0.15 for GMM-UBM and i-vector 
systems respectively when sample size increases from 20 to 
100 speakers. Overall, the i-vector system consistently 
produced the lowest Cllr mean and range, compared with 
GMM-UBM. The trade-off in terms of improved and less 
variable Cllr range is a slight increase in Cllr mean (i.e. a loss in 
discrimination) compared with logistic regression. When 
scores are sampled from normal distributions (Figure 2. (d)), 
the Cllr range (0.22 to 0.19) for the i-vector system shows less 
fluctuation compared with the skewed scores. The Cllr range 
for the i-vector system remains lower than 0.20 when the 
sample size is over 40 speakers; however, the difference 
between the Cllr fluctuations in the Figure 2. (c) and Figure 2. 
(d) is very small. Similarly, there is little difference between 
the Cllr range from the GMM-UBM system using normally 
distributed scores (Cllr range = ca. 0.59 to 0.30; Figure 2. (d)) 
and those using skewed scores (Cllr range = ca. 0.60 to 0.31; 
Figure 2. (c)). Irrespective of the score skewness, the mean Cllr 
values remain stable across different sample sizes for both 
GMM-UBM (mean Cllr = ca. 0.48) and i-vector mean (Cllr = 
ca. 0.38) systems.   

4. Discussion 
4.1 Baseline system 
The results show that score skewness has a more marked 
effect on system reliability than on system validity. When 
sample size is small and logistic regression is used, the Cllr 
variability is high for both systems (Figure 2. (a) and (b)), but 
especially for the i-vector system. For example, the Cllr range 
in the i-vector system is almost 1.3 when scores are skewed 
(Figure 2. (a)) and 20 speakers are used. However, Cllr range is 
around 0.5 with the same sample size (i.e., 20 speakers) when 
scores follow a normal distribution (Figure 2. (b)). Meanwhile, 
score skewness seems to have a less marked effect on system 
reliability for the GMM-UBM system when sample size is 
small. This is principally because GMM-UBM produced less 
skewed scores (Table 1).  

Within calibration methods, mean system validity (mean 
Cllr) stays stable regardless of score skewness and sample size. 
This is unsurprising because system validity is mostly 
dependent on the amount of overlap between SS and DS score 
distributions which is depend on the distance between the 
mean of SS and DS score distributions as well as the variance. 
Since skewness was the only parameter adjusted in the current 
study, the mean system validity should not be substantially 
affected across normally distributed and skewed scores.  

4.2 Bayesian calibration as a solution 
The results in Figure 2 (c) and (d) show that Bayesian 
calibration improves system reliability considerably when 
scores are skewed (as is commonly found in the real world). 

Using scores for 20 speakers simulated from the i-vector 
system and the Bayesian calibration model, the Cllr range is 
just above 0.3 (Figure 2 (c)) compared with 1.3 (Figure 2 (a)) 
for logistic regression. Cllr range further decreases when more 
speakers are used. For scores simulated from the GMM-UBM 
system, the Bayesian calibration does not seem to improve 
system reliability as much it does in the i-vector system. 
Figure 2 (c) and (d) shows that score skewness has much less 
effect on system reliability using Bayesian model compared 
with the use of logistic regression for the i-vector system, i.e., 
the differences between the Cllr range (black lines in Figure 2 
(c) and (d)) are less than 0.1 across different sample sizes. For 
the GMM-UBM system, score skewness seems to have less 
effect on system stability when 40 or more speakers are used, 
i.e., the difference between the Cllr range values in Figure 2 (c) 
and (d) (red lines) become smaller when 40 or more speakers 
are used.  

The mean Cllrs obtained using Bayesian calibration do not 
fluctuate considerably when scores are sampled from skewed 
and normal distributions respectively (Figure 2. (c) and (d)). 
This is similar to the pattern observed in mean Cllrs using 
logistic regression (Figure 2 (a) and (b)). However, for the i-
vector system, the mean Cllr is slightly higher using Bayesian 
calibration (mean Cllr  = 0.38) than using  logistic regression 
(mean Cllr = 0.30), while the mean Cllr remains stable 
irrespective of calibration methods for GMM-UBM. It is 
therefore important for experts to consider what they consider 
a ‘low enough’ mean Cllr to be in making decision about 
which system to use in a forensic case and the potential trade-
offs between discriminability and uncertainty (see [25]).  

5. Conclusion 
The current study investigated the effect of score skewness 
and sample size on overall performance of different types of 
ASR systems and the feasibility of reducing uncertainty at the 
score space via Bayesian calibration. On the surface, it seems 
that using Bayesian model can effectively reduce the level of 
uncertainty and fluctuation in overall performance caused by 
score skewness. The trade-off is a slight increase in mean Cllr. 
Taken together, our results indicate that, in the forensic 
context, it is not the case that the modern ‘state-of-art’ system 
which is capable of the best validity is necessarily the optimal 
choice. Rather, this choice is dependent on sample size, score 
skewness, and the choice of calibration method (likely 
amongst of considerations). 

Future work should consider the effects of different priors 
on Bayesian calibration. The Jefferys prior used in the current 
study is a member of the beta distribution (i.e., continuous 
distributions with intervals between 0 and 1). Similarly, the 
Haldane (i.e., α =0 ) and Laplace (i.e., α =1) priors are also 
members of the beta distributions, and [13] pointed out that 
Haldane prior is more appropriate for evaluating DNA 
evidence. A further empirical question then would be which 
prior gives the best overall performance; however, a scientific 
question would be why certain prior yields the best overall 
performance and the rationale behind the choice of different 
priors for LR computation, which needs to be explored more 
in future studies. 
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