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Abstract

Languages, dialects, and speakers can differ substantially in the
temporal structure of speech. With the exception of only a
handful of studies, the application of this information has been
fairly limited in forensic speech research and casework. This
may in part be due to existing differences in how to quantify
temporal differences, as well as the limited research on the
efficacy of such operationalisations for speaker discrimination.
Standard operationalisations of temporal information have
included measures reflecting global aspects of vowel or
consonant duration alternations (e.g., Rhythm Metrics: RMs),
as well as local measures of the change and acceleration of the
cepstrum (e.g., delta and delta-delta coefficients in Automatic
Speech or Speaker Recognition). This paper investigates the
utility of these temporal measures for discriminating among
four dialects of British English that contrast in region and
language contact: Cambridge, Multicultural London, Leicester,
and Punjabi-Leicester English. Using linear regression, log-
likelihood model comparison and k-means clustering, we
identified significant differences between dialects in all
investigated RMs and substantially better performance of RMs
in comparison to delta and delta-delta coefficients in dialect
clustering. These findings suggest that temporal information in
speech, and particularly global temporal information, is highly
useful for dialect and speaker discrimination.

Index Terms: rhythm, timing, dialectal variation, forensic
phonetics, automatic speaker recognition

1. Introduction

Languages, dialects, and individual speakers can differ
substantially in the temporal structure of speech [e.g., 1-10]. As
suggested in [9], temporal variation may be highly useful in
forensic speech analysis, but has been limited in its application
in both research and casework. This may in part be due to
existing differences in how to quantify temporal differences
between speakers, dialects, and languages, as well as the limited
research on the efficacy of such operationalisations for speaker
discrimination. The present study focuses on temporal variation
within and between four dialects of British English, and
examines the extent to which global and local representations
of temporal structure discriminate between these dialects. To
the extent that temporal representations can discriminate
between dialects, they may also prove useful for speaker
discrimination tasks.

Temporal representations of speech can be constructed at
varying levels of granularity. Global temporal representations
of speech can include long-term alternations in vocalic and
consonantal intervals which may approximate the rhythmic
pattern of speech [1]. (We note, though, that the acoustic
approximation of rhythm is more complex than can be
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adequately  addressed here [11].) Local temporal
representations of speech can include the change between
adjacent spectral properties, which may also be diagnostic of
speaker or dialect identity. Existing research points towards the
usefulness of global temporal properties for describing and
discriminating speakers and dialects [e.g., 2, 4-9], and also for
automatic speech and speaker recognition [12—15]. Previous
research in the former area has largely employed Rhythm
Metrics (RMs) as a global representation of temporal structure,
which we adopt as well. Local temporal information is known
to improve the performance of automatic speaker and language
recognition systems [16-20]. This information is standardly
represented by delta (A) and delta-delta (AA) features, which
reflect the change in spectral properties between adjacent
temporal frames and the acceleration of that change. We thus
ask two primary questions in our research: how well do global
temporal properties (RMs) discriminate among four varieties of
British English that differ in region and language influence?
Second, how do RMs compare to delta and delta-delta features
in dialect discrimination?

Rhythm metrics (RMs) are considered here to represent
global temporal properties of speech that may relate to speech
timing and/or rhythm. These metrics were devised as a response
to early studies suggesting that languages may be classified as
either “stress-timed” or “syllable-timed” languages [21-22]. A
stress-timed language is marked by regular intervals between
stressed syllables whereas a syllable-timed language has
syllables of roughly equal length. Findings from [23] suggested
a much more nuanced range of temporal and rhythmic patterns
in languages related to vowel reduction and complexities in
consonantal clusters. RMs aim to capture these variances by
quantifying patterns in the duration and temporal alternation of
vocalic and/or consonantal intervals. Vocalic measures capture
differences in vowel reduction and variation in tense vowels
and diphthongs, while consonantal measures correlate with the
complexity of consonantal structures [1, 3, 24-25].

These measures have been applied in a number of analyses
considering rhythmic patterning across a range of languages,
dialects, and speakers [e.g., 1-5, 7-10, 24-26]. Among British
English dialects, [27] suggest that L1 varieties show little
variation in speech rhythm, arguing any differences result from
differences in speaking style. The rhythmic patterns of British
English varieties, however, may be influenced by dialect and
language contact. Using various RMs [3], [28] identified a
range of rhythmic patterns among young speakers in the
London area, depending on ethnic influence and dialect contact:
non-Anglo Hackney speakers (speakers of Multicultural
London English) were more syllable-timed than Anglo
Hackney speakers, who were in turn more syllable-timed than
Anglo speakers in Havering, a relatively Anglo-dominant area.
Further work investigated rhythmic differences between a so-
called “stress-timed” variety, Leeds English, and a “syllable-
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timed” variety spoken by Punjabi-English bilinguals from
neighbouring Bradford [29]. Though the results showed
numerical differences in several RMs, these differences were
not statistically supported, suggesting that these two varieties
were unlikely to be two extremes of a continuum.

With respect to their forensic application, durational ratio
measures capturing the percentage over which speech is voiced
or vocalic (%V, %VO) have been shown to be successful
discriminators for speakers of German and Swiss German [9]
and Persian speakers [26]. Additionally, [10] showed durational
variability measures to be capable of speaker discrimination. A
growing body of research has also considered the possibility of
these rhythmic differences to discriminate between dialects of
a language [2, 4-8]. The present study evaluated the utility of
global RMs for discriminating among four varieties of British
English: Cambridge (CE), Multicultural London English
(MLE), Leicester (LE) and Punjabi-Leicester (PLE). These
varieties are relatively balanced along dimensions of region and
language contact: CE and MLE are geographically Southern
whereas LE and PLE are spoken in the Midlands; CE and PE
are Anglo varieties whereas MLE and PLE are contact varieties.
In addition, we investigated the relative performance between
global temporal representations (RMs) and local temporal
representations (As, AAs) in discriminating these dialects.

2. Experiment 1: Discriminability of
Rhythm Metrics

An empirical study was conducted using six RMs to capture
variation between these dialects. Our first question was to
examine whether between-dialect variability was greater than
within-dialect variability. The combination of these measures
was then submitted to a k-means cluster analysis to evaluate
their efficacy in clustering speakers of the same variety.

2.1. Methods

2.1.1. Materials

Recordings of the CE and MLE speakers came from the
International Varieties of English (IViE) corpus [30]. These
recordings consisted of 24 speakers (12 CE, 12 MLE), reading
a short passage (The Cinderella Passage). Speakers were split
roughly equally between male and female and were aged 16 at
the time of recording. The MLE participants were monolingual
speakers of Caribbean descent. All of the speakers had a
moderate to good reading ability.

The recordings of the LE and PLE speakers were obtained
from [31] and consisted of 30 speakers (8 LE, 22 PLE) reading
a short passage (Fern’s Star Turn). Speakers were split roughly
equally between male and female; ages ranged from 20 to 53
years. The LE (‘Anglo-Leicester’) speakers were all British-
born with no heritage language other than English, and both
parents and grandparents were born in the United Kingdom.
The PLE (‘Punjabi-Leicester’) speakers were second-
generation (British-born) speakers with ‘Punjabi language
heritage’ and characterised as having at least one parent who is
a native Punjabi speaker and first-generation immigrant from
the Indian Punjab. The heritage language for these speakers is
close to Modern Standard Punjabi.

2.1.2. Measurement

The rhythm metrics presented in Table 1 were calculated by the
‘Duration Analyzer (version 0.03)’ Praat script [32]. Only
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normalised measures were considered within the analysis to
account for slight differences in the length of the passages read
by the speakers. This minimised influences due to the overall
number of vocalic/consonantal segments in each corpus.

For the CE and MLE speakers, phone- and utterance-level
alignments were obtained using the English acoustic models in
the Praat EasyAlign software extension (English models based
on British English) [33]. For the LE and PLE speakers, phone-
and utterance-level alignments accompanied the recordings. All
phone alignments were manually adjusted. Consonantal and
vocalic segments and intervals were derived from these
alignments. Following [3], vocalic intervals were defined using
the vowel onset and offset, while intervocalic (consonantal)
intervals were the stretches from vowel offset to onset. Glides
and liquids were treated as consonants, aside from occurrences
of /1/-vocalisation.

Table 1: Rhythm Metrics used for analysis. All
durations were log-transformed.

Metric Description

stdevV
stdevC

Standard deviation of vocalic interval duration
Standard deviation of consonantal interval
duration

Coefficient of variation for the vocalic interval
duration

Pairwise Variability Index for vocalic interval
durations. Mean of the differences between
successive vocalic interval durations, divided
by their sum

Pairwise Variability Index for consonant
interval durations. Mean of the differences
between successive consonantal interval
durations, divided by their sum

Normalised pairwise variability index for
summed vocalic and consonantal interval
durations. Mean of the differences between
successive vocalic and consonantal interval
durations, divided by their sum

VarcoV

nPVI-V

nPVI-C

nPVI-CV

2.2. Results

We conducted a series of analyses to investigate the utility of
rhythm metrics (RMs) for dialect discrimination and
classification. First, we analysed the effect of dialect on each
RM using linear regression. In addition to examining major
differences in RM realisation among dialects, we also examined
whether dialect significantly improved model fit for each RM
through model comparison [8]. Finally, we assessed the utility
of RMs for dialect discrimination in a k-means cluster analysis.

2.2.1. Descriptive statistics

As shown in Figure 1, variation was observed between dialects
in the z-scored values obtained for each RM. Based on visual
inspection, no one measure discriminated all four dialects,
though individual dialects or small groups of dialects certainly
differed from others for several of the measures.

2.2.2. Linear regression models

Linear regressions models were implemented for each of the six
RMs using the Ime4 package in R [34], with the RM values as
a continuous dependent variable and dialect and gender as
predictors. As there was only one RM value per recording, by-



speaker random effects were not included. Factors were sum-
coded, such that the interpretation of the following comparisons
are relative to the average production across all four dialects
(LE held out). Alpha levels were adjusted to 0.008 using a
Bonferroni correction for multiple hypothesis testing.
Cambridge speakers exhibited significantly higher values for
stdevV, VarcoV, and nPVI-CV, and significantly lower stdevC
values (stdevV: B = 0.047, stdevC: = -0.016, VarcoV: f =
0.032, nPVI-CV: § = 3.87, each p < 0.008). MLE speakers had
significantly lower values for stdevC, nPVI-V, and nPVI-C
(stdevC: B =-0.031, nPVI-V: f =-2.88, nPVI-C: f =-2.60, each
p <0.008). Punjabi-Leicester speakers had significantly higher
stdevC values, but significantly lower stdevV, VarcoV, and
nPVI-CV values (stdevV: B = -0.041, stdevC: = 0.016,
VarcoV: B = -0.037, nPVI-CV: B = -2.20, each p < 0.008).
Gender was not significant in any model.

Log-likelihood model comparisons were conducted to
compare the model fit of models in which dialect was included
as a predictor and those in which it was not [8]. For all RMs,
the model fit was significantly improved with dialect as a
predictor (for all six comparisons, p < 0.008).
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Figure 1: Scaled results for each rhythm metric (RM) plotted
by dialect. Boxplots reflect variation across speakers within
each dialect

2.2.3.  K-means cluster analysis

A k-means cluster analysis was implemented using the
‘factoextra’ package in R to examine the extent to which these
six measures properly cluster these varieties of British English
[35]. For this analysis, each speaker was represented by the six
RMs (their rhythmic profile), and the number of clusters was
set to four to reflect the number of expected varieties. An
accompanying Principal Component Analysis (PCA) was
conducted to identify the primary dimensions of variation.

Overall, classification was respectable: assuming that each
cluster corresponded to the dialect most represented in that
cluster, the overall purity was 0.64 (where perfect classification
corresponds to a purity score of 1) [36]. The slightly diminished
purity may have been driven by the PLE speakers who were
notably diverse in background and occupied several clusters.
The two primary dimensions of variation, as estimated in an
accompanying PCA, were largely interpretable: Dimension 1
appeared to reflect the divide between Anglo and Ethnic
varieties, and Dimension 2, the divide between Southern
(Cambridge/London) and Midlands (Leicester) speakers (or
alternatively, the spoken passage). All CE speakers were
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successfully grouped together, and despite previous studies
suggesting that Anglo—British English varieties are not
distinctive on the basis of their rthythmic patterning [27], none
of the LE speakers were grouped with the CE speakers on the
basis of the full rhythm profile. Further investigation into the
optimal set of RMs for dialect discrimination would be
beneficial.
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Figure 2: Results of the k-means cluster analysis using RMs.
Clusters are visualised along the two primary dimensions of
variation

2.3. Discussion

Overall, these findings reveal greater between-dialect
variability than within-dialect variability for each of the tested
RM:s. Significant differences were observed among dialects for
several RMs, and dialect significantly improved model fit for
all six RMs. Anglo varieties tended to have more variability in
vocalic durations and longer durations between vocalic
intervals (vocalic RMs) than contact varieties, and Leicester
varieties tended to have more variability in consonantal
durations and longer durations between consonantal intervals
(consonantal RMs) than Southern varieties. (We note that
region is confounded with reading passage here, which should
be disentangled in future research.) Relative to average, CE was
marked by more variable vowel duration, less variable
consonantal duration, and overall more variability in the time
between utterances; MLE was marked by less variable
consonantal duration, less time between successive vocalic
intervals, and less time between successive consonantal
intervals (the latter two may suggest a fast speech rate); LE was
marked by more variable consonantal durations, more time
between successive vocalic intervals, and more time between
successive consonantal intervals (the latter two may suggest a
slow speech rate); finally, PLE was marked by more variable
consonantal durations, less variable vocalic durations, and less
variability in the time between utterances. The complex
temporal characterisation of these dialects and the interaction
between vocalic and consonantal RMs between region and
language influence suggest that temporal aspects of speech may
be more fruitfully described by a rhythmic profile than a binary
distinction or even a (uni-dimensional) continuum [3].
Moreover, the clustering of these dialects using the rhythmic
profile was respectable, with a purity of 0.64.



3. Experiment 2: Discriminability of Delta
Metrics

Temporal information is known to improve the performance of
automatic speaker and language recognition systems [19].
These systems use delta (A) and delta- delta (AA) coefficients
to capture these temporal aspects of the speech signal. As, also
known as differential coefficients, measure the degree of
spectral change across adjacent frames; AAs, or acceleration
coefficients, measure the degree of change across the As.
However, it is not clear whether the information being captured
by the As and AAs within automatic systems performs as well
as the linguistically-motivated RMs for speaker or dialect
discrimination. While the RMs capture durational differences
between syllables (global information), the As and AAs capture
changes between much smaller frames of speech (local
information). In this experiment, we examined the potential of
A and AA coefficients for dialect discrimination.

3.1. Methods

After removing silent intervals, As and AAs were extracted in
MatLab. The recordings from Experiment 1 were first subjected
to voice activity detection using the vadsohn function in the
Voicebox toolkit [37]. Using the speech-active portions of each
recordings, Mel-frequency cepstral coefficients (MFCCs) were
then extracted within a 0-4000 Hz range from 20 ms frames
shifted by 10 ms using the melfcc function in the Rastamat
toolkit [38]. Cepstral mean and variance normalisation was then
applied to the MFCCs in an attempt to reduce the effects of the
different equipment and room conditions used in the collection
of the original recordings [39]. This was done using the cmvn
function from the MSR Identity toolkit [40]. As and AAs were
then appended to the normalisation MFCC feature vector for
each frame using the delta function in Rastamat.

The As and AAs were then averaged for each recording —
the MFCCs themselves were not used for the purpose of
analysis. Thus, each speaker’s recording was described using
12 As and 12 AAs. Following the methods from Experiment 1,
these values were used as input for k-means clustering, to assess
how well they were able to group speakers of the same variety.

3.2. Results

As shown in Figure 3, the assignment of speakers to clusters
was skewed towards Cluster 1: the majority of speakers for each
variety was grouped into this cluster (9 CE, 12 MLE, 5 LE, 10
PLE). The overall purity of the clusters was 0.44, which was
much lower than the value of 0.64 obtained using RMs [36].
This is particularly striking given the fact that the delta analysis
employed 24 temporal features, whereas the RM analysis
employed only 6. The first two principal dimensions of
variation shown in Figure 3 also accounted for much less of the
variation relative to those in the RM analysis.

3.3. Discussion

This experiment investigated the utility of local temporal
representations commonly employed in ASR systems for
dialect discrimination. No clear clustering of dialects was found
using the combination of local As and AAs (Figure 3), unlike
that found using the global RMs (Figure 2). This suggests that
As and AAs are not capturing the same information as the
linguistic measures of rhythm used in Experiment 1 and may be
missing useful information regarding meaningful variation
between dialects, and thus speakers. This, in itself, is a positive
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finding for forensic purposes, since it suggests that speaker and
accent/language recognition systems are not sensitive to the
types of rhythm information analysed by linguists. Therefore,
there is considerable potential for improving the performance
of such systems using the measures described in Table 1. The
extent to which this is the case, of course, remains an empirical
question, and one that deserves further attention.
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Figure 3: Results of the k-means cluster analysis using As and

AAs. Clusters are visualised along the two primary
dimensions of variation

4. Conclusion

The purpose of this study was two-fold: to investigate the extent
to which four British English varieties differed from one
another in their temporal aspects, and to discern how well
global and local temporal representations performed in dialect
discrimination. The findings from Experiment 1 showed that
the realisation of six RMs differed significantly between
dialects, and speakers of the same variety were mostly grouped
together using a set of these metrics. This corroborates findings
from Swiss German [8] and further strengthens the argument
for using speech rhythm as a cross-dialectal discriminator.
Moreover, significant differences were observed between
Southern and Midlands varieties of British English, and
between Anglo and contact varieties. In particular, Southern
and Leicester varieties differed primarily in consonantal RMs,
whereas Anglo and contact varieties differed primarily in
vocalic RMs.

Experiment 2 compared local temporal representations of A
and AA coefficients with linguistically-motivated RMs for
dialect discrimination. Delta features performed relatively
worse than RMs, which successfully captured variation capable
of discriminating between dialects — variation that may also be
valuable for ASR systems. These results suggest that globally-
defined temporal measures of speech may prove useful for
forensic and ASR applications [see also 12-15], and that
rhythmic profiles of speakers, dialects, and languages may be
beneficial for linguistic description and analysis.
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