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Abstract 
 
Within the field of forensic voice comparison (FVC), there is growing pressure for experts to 
demonstrate the validity and reliability of the conclusions they reach in casework. One benefit 
of a fully data-driven approach that utilises databases of speakers to compute numerical 
likelihood ratios (LRs) is that it is possible to estimate validity and reliability empirically. 
However, little is known about the stability of LR output as a function of the specific speakers 
sampled for use in the training, test, and reference data sets. The present study addresses this 
issue using two large sets of formant data: Cantonese sentence final particle /a/ and British 
English filled pauses UM. Experiments were replicated 100 times varying the (1) training, test 
and reference speakers, (2) training speakers only, (3) test speakers only, and (4) reference 
speakers only. The results show that varying the speakers in all three sets has the greatest effect 
on system stability for both the Cantonese and English variables, with the Cllr varying from 
0.60 to 0.97 for /a/ and 0.32 to 1.33 for UM. However, this variability is primarily due to the 
effects of uncertainty in the test set. Varying only the training speaker speakers has the least 
effect on system stability for /a/ (Cllr range: 0.76 to 0.88), while varying reference speakers has 
the smallest effect for UM (Cllr range: 0.40 to 0.54). The results indicate that in LR-based FVC 
it is important to assess the stability of system as a function of the samples of speakers used 
(Cllr range) rather than just reporting a single Cllr value based on one configuration of speakers 
in each set. The study contributes to the general debate on reporting uncertainty in LR 
computation.  
 
Key words: forensic voice comparison, Likelihood ratio, system stability, English filled pause, 
Cantonese sentence final particle.   

1 Introduction 
 
Forensic voice comparison (FVC) involves the comparison of two or more speech samples in 
the context of a legal case; typically one of an unknown offender, and the other of a known 
suspect typically recorded during a police interview, e.g. in the UK (Home Office 2003) or 
through wiretaps, e.g. in Germany and China (Liu 2006). In the last two decades, the likelihood 
ratio (LR) framework has been employed in more and more FVC studies (e.g. Morrison 2008; 
Zhang, Morrison and Thiruvaran 2011; Hughes, Wood and Foulkes 2016), and is now widely 
accepted, at least in principle, as the “logically and legally correct” (Rose and Morrison 2009: 
143) approach for the evaluation of comparison evidence across forensic sciences (Robertson 
and Vignaux 1995). The LR is a measure of the strength of evidence under the competing 
propositions of the prosecution and defence, which takes into account the similarity between 
the suspect and offender samples, as well as their typicality in terms of a relevant population 
(see Hughes and Foulkes 2015 for more details about relevant reference populations). For 
example, if the samples are very similar to one another, the strength of evidence is high when 
the typicality is low (i.e. it is not likely to find a similar speech sample among the relevant 
population), while the strength of evidence is low when the typicality is high (i.e. it is likely to 
find a similar sample from the relevant population).   
 
Data-driven LR-based FVC relies on corpora of speakers to estimate empirically the strength 
of the voice evidence. It is essential to do empirical testing of validity and reliability of a system 
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(i.e. how well the system is able to separate/discriminate between same- and different-speaker 
pairs and the stability of the output), in order for the end-user to be able to contextualise the 
LR conclusion provided. It is worth noting that the term system here refers to the method, 
speech features and corpus that are used for LR computation (Morrison 2013), rather than a 
much narrower meaning that used to describe automatic speaker recognition software. The 
system is normally evaluated by using three sets of data, namely training, test and reference 
data sets. The training data is used to train a model which is applied to the test data for system 
calibration, and the reference data is used for the evaluation of typicality. However, there are 
inevitable uncertainties in data-driven analysis. That is, the LRs and overall system 
performance will reflect the specific choices and groupings of data. Specifically, this may 
include the speakers used for training and testing the system, the variables used as input, the 
number and choice of tokens, and the methods used for extracting acoustic data etc. The 
underlying uncertainty could also be introduced from the data generating process such as 
sampling from the relevant population, and the statistical modelling technique employed 
(Morrison 2016). Recognition of these facts has generated debate on how to calculate and 
report precision or uncertainty in LR calculations, reflecting “imperfect data sources and 
imperfect knowledge” (Curran 2016: 382; see also e.g. Morrison and Enzinger 2016). 
 
 
Many previous studies have explored the performance of linguistic features such as individual 
vowels and phonetic sequences using LR-based testing (e.g. Morrison 2009; Zhang et al. 2011; 
Rose and Wang 2016). Typically, a group of speakers (often 60) is selected, split equally into 
training, test and reference speakers (e.g. 20-20-20), before running the analysis. Some studies 
have explored system stability by taking sociolinguistic factors into consideration, e.g. age, 
social class (Hughes and Foulkes 2015) and accent (Hughes and Foulkes 2017), which shows 
that the system yields better performance when using speakers with matched sociolinguistic 
factors (i.e. matched accent/age group/social class). Other studies have looked into the effect 
of the number of speakers on system performance, i.e. how many speakers are enough to 
achieve stable and accurate LR output? (e.g. Ishihara and Kinoshita 2008, 2014; Hughes 2017). 
Ishihara and Kinoshita (2014) found that the system starts to yield stable performance when 
the number of reference speakers reaches 30, and the system performance is close to optimum 
when there are 70 reference speakers, while Hughes (2017) found that the system starts to yield 
stable performance when more than 20 speakers are used for each of the training, test and 
reference data sets.    
 
However, no previous studies have explored ‘who’ rather than ‘how many’ speakers should be 
used in LR-based FVC. One key question is whether system performance is consistent if we 
use different samples of speakers from a single relevant population (e.g. speakers with similar 
social class, accent, education etc.) and replicate experiments multiple times. The current study 
builds on Hughes (2017) to explore the stability of LR output according to the specific speakers 
used (rather than size) for training, test, and reference data sets. The current study uses two 
segmental variables: the Cantonese sentence final particle /a/ and the filled pause UM from 
Standard Southern British English (SSBE). Four experiments were carried out to explore the 
following questions.  
 

1. To what extent does system performance vary if different sets of training, test and 
reference speakers (of the same size) sampled from the same relevant population are 
used?  
  

2. Is the training, test or reference data more sensitive to speaker sampling? 
 

3. What is the feasibility of using the same system for multiple cases? 
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Section 2 gives more details about the corpora, variables and data processing. However, only 
Cantonese data processing is explained in detail since it was collected specifically for the 
present study, Existing data were used for UM. The data collection and processing are 
described in from Hughes et al. (2016). Section 3 explains the experiment procedures and 
results are presented in section 4. Section 5 discusses the experimental results with regard to 
the three research questions and compares the results with previous studies, and a conclusion 
is given in section 6.  
 

2 Method 
 
2.1 Corpora  
 
Two corpora were used in the present study. The first is the IARPA Babel Cantonese language 
pack (Andrus et al. 2016), which contains approximately 215 hours of Cantonese 
conversational and scripted telephone speech of speakers from Guangdong province in 
mainland China. The corpus was designed for training speech recognition technologies. 
Therefore, it is not an ideal corpus for FVC studies, because there was only one recording 
session per speaker. As such it does not fit with typical forensic conditions involving two 
samples recorded with some time gap between them. Using contemporaneous speech data of 
this kind is expected to overestimate the accuracy and stability of the overall FVC system 
(Enzinger and Morrison 2012) relative to real casework. Sociolinguistic factors are also not 
controlled in this corpus, beyond language (Cantonese) and biological sex (male). However, 
this corpus is forensically realistic in terms of channel since the conversations were recorded 
using different telephones in different environments (e.g. indoor, outdoor, 
recording/transmission-channel mismatch). In principle, forensic recordings could be made in 
any situation by any recording devices. All the audio files were sampled at a rate of 8000Hz, 
meaning that only information up to 4000Hz was available for analysis, and in 8-bit a-law 
encoded sphere format. Due to poor transmission and different quality of telephone voice 
recorders, the third formant of vowels proved extremely difficult to measure. As a result, only 
the first two formants were used in the current study. 
 
The second corpus is the Dynamic Variability in Speech corpus (DyViS; Nolan, McDougall, 
de Jong, and Hudson 2009). DyViS was designed for forensic phonetic research. It contains 
100 Standard Southern British English (SSBE) male speakers aged between 18 and 25. The 
data used for the current study were extracted from Task 1 and Task 2. Task 1 involves a mock 
police interview where speakers assumed to be the suspects, and were asked to answer 
questions based on a map given on a screen, while avoiding incriminating information. The 
purpose of this task is to obtain “spontaneous speech in a situation of ‘cognitive conflict’, where 
speakers were made to lie” (Nolan et al. 2009: 41). Task 2 involves a telephone call with a 
‘accomplice’, where the researcher requests a debriefing from the subject about the mock 
police interview. The DyViS corpus is less forensic realistic as all the recordings are high studio 
quality.   
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2.2 Variables  
 
Filled Pauses in SSBE 
 
Filled pauses commonly occur in spontaneous speech and, amongst other things, fill gaps 
between utterances. They have been shown to be good speaker discriminants, outperforming 
lexical vowels in FVC tasks (Hughes et al. 2016). There are a number of potential explanations 
for this. Firstly, filled pauses are often abutted by silence on one or both flanks and are thus 
less influenced by coarticulation. Secondly, they have a high frequency of occurrence among 
speakers in most forms of spontaneous speech (Tschäpe et al. 2005). It is therefore likely that 
they will be available in most spontaneous speech samples. Thirdly, filled pauses usually have 
longer duration than lexical vowels, which gives longer and more stable formant trajectories 
making the segmentation and acoustic measurement easier to conduct (Shriberg 2001, Hughes 
et al. 2016). Given their impressive speaker discrimination performance in previous studies, it 
is of interest to assess the stability of the performance of filled pauses using different sets of 
training, test and reference speakers from a single relevant population. The two most common 
filled pauses are UH (err) and UM (erm). However, only UM was used in current study because 
it yielded a better speaker-discriminatory performance in Hughes et al. (2016).  
 
Cantonese Sentence Final Particle /a/ 
 
Cantonese sentence final particles are bound forms attached in sentence final position (Law 
2002). Functionally, they are often said to be the equivalent of intonation in English (Wakefield 
2011). These particles are potentially good variables for FVC because they occur frequently in 
daily usage (Leung 2009). The number of different sentence final particles in Cantonese ranges 
from 30 (Kwok 1984) to 95 depending on how one counts them (e.g. /a/, /za/, /ma/, /la/) (Law 
2002). In the current study we focus on /a/ ‘啊 ah’ as it is one of the most common in Cantonese 
(Sybesma and Li 2006:1774). The final syllable lengthening provides the duration required for 
“more closely approximate canonical formant values” (Linblom 1963). Similar to filled pauses, 
the sentence final particle also has longer duration than inter-syllabic /a/ making the 
segmentation process easier. A waveform and spectrogram representation of an example of a 
sentence final particle /a/ is given in Figure 1. The transcript in the Praat TextGrid (version 
6.0.36; Boersman and Weenink, 2017) is Romanised Cantonese pronunciation and the 
following number indicates tonal information. Dei6fong1 means “place/area”, while a1 is 
the sentence final particle.  
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Figure 1. Example of Cantonese sentence final particle in the phrase dei6 fong1 a1. 
 
 
2.3 Data processing  
 
Existing filled pause data were available from Hughes et al. (2016), consisting of quadratic 
polynomial coefficients extracted from the first three formants of the vowel portion of UM 
tokens. Tokens were manually marked using Praat (version 6.0.36; Boersma and Weenink, 
2017) TextGrid, and multiple measurements from across the duration of the first three formants 
were taken using a Praat script. After that, quadratic polynomial curves were fitted to raw 
formant data, and the coefficients were saved and processed for LR computation (see Hughes 
et al. 2016 for details). A total of 73 speakers with an average of 14 tokens per speaker per 
session were available.  
 
The following sections describe in detail the extraction and processing procedures for the 
Cantonese data. 
 
2.3.1 Raw data segmentation  
 
Tokens of Cantonese /a/ were manually segmented and labelled using a TextGrid in Praat. 
Figure 2 shows an example of segmented token. The boundaries were placed at the onset and 
offset of the full vocalic portion of each token. The onset of /a/ was marked by the start of 
regular periodicity of the full vocalic portion, and the offset was marked by the end of 
periodicity. Tokens were discarded when the TextGrid boundaries could not be confidently 
placed due to poor recording quality and transmission issues.  
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Figure 2: Segmented Cantonese sentence final particle /a/. 
 
Two Praat scripts were then used to extract the first two formants of all the segmented tokens.  
As already noted, F3 was extremely weak meaning it was generally difficult to track reliably 
(see Figures 1 and 2 for illustration). The first script (Lennes 2003a) extracted all the segmented 
tokens into a separate sound file and saved it to a specified directory. The second script (Lennes 
2003b) took all the individual sound files and extracted the first two formants at time-
normalised +10% steps across the vocalic portion of each token (McDougall 2004, 2006) using 
the To Formant (burg) … function in Praat. The default formatting setting was 4 formants 
below 4000Hz. A series of heuristics was applied to correct formant measurement errors 
following procedures in Hughes and Foulkes (2015). Ranges of 200-900 Hz and 1000-2000 
Hz were chosen for F1 and F2. Tokens with values outside this range were removed, because 
they are outside reasonable frequency ranges of F1 and F2, and thus classed as obvious 
measurement errors. Statistical outliers were then identified by calculating the pooled mean 
across all speakers for each measurement point. z-scores were then calculated at each +10% 
step. Values of ±3.29 standard deviations greater than the mean were removed. In order to 
preserve as many tokens as possible, missing interval (10%) values were inspected visually 
and replaced by the mean of two adjacent measurements. However, the whole token was 
removed where the first and/or last measurements were missing.  
 
2.3.2 Parametric curve fitting and feature extraction  
 
Quadratic polynomial curves were fitted over the nine measurements of F1 and F2 for /a/. The 
polynomial coefficients capture the dynamic properties of the trajectories of formants, which 
reduce the dimensionality of the data set and improve discrimination performance (Hughes et 
al. 2016, McDougall 2006). Figure 3 shows an example of quadratic fitting for /a/ from speaker 
54. The circle markers are the raw F1 and F2 values, while the lines are polynomial curves 
fitted to the raw F1 (darker lines) and F2 (lighter lines) values. The reason to use quadratic 
polynomial curves for /a/ is because its trajectory is essentially linear with no more than one 
turning point.  
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Figure 3: Quadratic curve fitting to /a/ of one speaker. 

 
Each token was plotted and fitted with corresponding polynomial curves. The data were 
inspected visually, and obvious measurement errors removed based on large residuals. 
Polynomials were re-fitted once these measurement errors had been removed. The final data 
set contained 155 speakers with an average of 14 tokens per speaker in total. The input data for 
computing LRs consisted of three quadratic polynomial coefficients per formant which capture 
information about absolute frequency and the shape of the trajectory. This is a means of 
representing the formant dynamics with a smaller number of coefficients.  
 
 
2.3.3 LR computation  
 
LR computation involves two stages: feature-to-score conversion and score-to-LLR mapping 
(Morrison 2013). For Cantonese /a/, data for each speaker was divided in half with the first 
half acting as the suspect sample and the second half acting as the offender sample. Given that 
the UM data came from two recording sessions, the first session was used as the suspect sample, 
while the second was used as the offender sample.  
 
At the feature-to-score stage, same- (SS) and different-speaker (DS) pairs in each of the 
training and test sets are compared using the multivariate kernel density formula (MVKD, 
Aitken and Lucy 2004) to produce a series of scores. This involves assessing the similarity 
between the suspect and offender data, and evaluating typicality using data from the reference 
set. MVKD uses a normal distribution to model suspect data, while the reference data are 
modelled using kernel density estimation based on equally weighted Gaussians for each 
reference speaker (in this way the estimation of typicality for MVKD is speaker-dependent; 
Morrison 2011). At the score-to-LLR stage, the training scores were then applied to train a 
logistic regression model (Morrison 2011). The model coefficients were then applied to the test 
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scores to produce calibrated Log LRs (LLRs). The purpose of this is to optimise the system 
and “ameliorate what would otherwise be very misleading results” (Grigoras et al. 2013). 
 
For Cantonese /a/, 30 speakers were used in each of the training, test and reference sets. Each 
DS pair produced a single score, which resulted in 30 SS and 435 DS scores for each of the 
training and test sets. For UM, only 20 speakers were used in each set to allow for different 
samples of speaker to be used (given that the total number of speakers available was only 73). 
20 SS and 190 DS scores were produced for training and test data set respectively. System 
performance was evaluated using equal error rate (EER) and the log LR cost function (Cllr, 
Brümmer and du Preez 2006). EER represents the absolute proportion of trials that produce 
contrary-to-fact LRs (i.e. errors), reflecting the point at which the proportion of false hits and 
misses is equal. Cllr is gradient measure of the goodness of the LRs, accounting for the 
magnitude of errors rather than the absolute proportion (i.e. a large magnitude error is much 
more problematic for a system than a small magnitude error). In both cases, the lower the values 
the better the performance. For Cllr a value of less than one indicates that the system captures 
some useful information. Values of greater than one reflects very poor performance.   
 

3 Experiments  
 
Four experiments were conducted to explore different aspects of system testing. 100 
replications of each experiment were conducted varying the speakers assigned to one or more 
of the training, test and reference sets. Ideally, a stable system would yield a consistent Cllr and 
EER irrespective of the make-up of the training, test, or reference sets. A larger range for the 
Cllr and EER indicates the system is highly sensitive to the make-ups of the sets.   
 

• Experiment 1: varying all speakers  
Speakers were randomly selected and assigned to the three data groups (training, test and 
reference) in each replication. Experiment 1 intends to mimic what happens in LR-based FVC 
research which often uses a single configuration of speakers in each set.  
 
The following three experiments vary the make-up of each data set separately, to assess the 
relative contribution of the training, test and reference speakers to a system’s stability.  
 

• Experiment 2: varying test speakers 
Only test speakers were varied in each replication. The same set of training and reference 
speakers were used through 100 replications. In this way the speakers that would constitute the 
‘system’ in FVC (i.e. the training and reference data) remain fixed throughout the replications. 
This allows us to assess the effect of only varying the speakers used to test the system.  
 

• Experiment 3: varying reference speakers 
Only reference speakers were varied in each replication, while training and test were fixed.  
Experiment 3 aims to explore whether a random selection of speakers from a relevant 
population adequately represents the population, and the sensitivity of system to the reference 
data.  
 

• Experiment 4: varying training speakers  
Only training speakers were varied in each replication, with test and reference sets fixed.  
Experiment 4 aims to explore the sensitivity of training data to different speakers, i.e. to assess 
the sensitivity of the system performance to different sets of the selection of speakers chosen 
to represent a matched population.  
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The experiments were carried out in R (R core team 2018) using a LR calculation and testing 
in FVC package (Lo 2018), which is an adaptation of the MATLAB implementation (Morrison 
2007) of Aitken and Lucy’s (2004) MVKD formula. The R script randomly selects speakers 
based on pre-defined randomisation rules for Experiments 1 to 4, runs comparison and 
calibration, and saves the results into a list. Each experiment was replicated 100 times with 
different configurations of training, test and reference speakers. Details of the experimental 
results are discussed below.  
 

4 Results  
 
4.1 Experiment 1: Varying all speakers  
 
Figure 4 shows system performance when varying speakers in all three data sets. The boxplots 
show the variation in Cllr (left panel) and EER (right panel) for Cantonese /a/ and SSBE UM. 
Varying test, training, and reference speakers causes system performance to vary to different 
extents for the two variables. Over the 100 replications, the overall range of Cllr for /a/ is 0.37, 
while the interquartile range is 0.07. All of the Cllrs for /a/ are lower than 1, which indicates 
that the system is capturing some useful information in each replication. However, the 
variability in Cllr indicates that the system stability is sensitive to different composition of 
speakers in training, test, and reference data.  
  
The Cllr for UM ranges from 0.32 to 1.33, and the interquartile range is 0.16. 75% of the Cllrs 
are lower than 0.64, while 50% of the Cllrs are between 0.48 and 0.64. There are seven statistical 
outliers among these results and three of them are larger than one, meaning that the system is 
not capturing any useful information in those three replications. Four other replications had 
Cllrs larger than 0.9, which also indicates a fairly poor performance. In general, UM yielded 
less stable system performance than the Cantonese /a/, although overall UM is a better speaker 
discriminant with most of the Cllrs for than those of /a/ across the 100 replications. It is also 
noted that none of the replications of UM yielded a better Cllr than that in Hughes et. al (2016).  
 

 
Figure 4: Boxplots of Cllr and EER of /a/ and UM by varying training, test and reference 
speakers in each replication. 
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 Cllr  EER(%)  
 /a/ UM /a/ UM 
Minimum 0.60 0.32 19.8 10.0 
1st quartile 0.70 0.48 23.3 10.5 
Median 0.74 0.54 26.3 15.1 
3rd quartile 0.77 0.64 26.8 16.0 
Maximum 0.97 1.33 33.6 25.1 
Interquartile range 0.07 0.16 3.5 5.5 
Overall range 0.37 1.01 13.8 15.1 

Table 1: Minimum, maximum, median, interquartile range, overall range, first and third 
quartiles of Cllrs and EERs of /a/ and UM in experiment 1. 

 
EER shows a similar pattern to Cllr (Figure 4). The EER for /a/ varies from 19.8% to 33.6%, 
with a median of 26.3% and an interquartile range of 3.5%. The EERs for UM range from 10% 
to 25.1% (OR = 15.1%) over the 100 replications. The median is 15.13% and the interquartile 
range is 5.46%. As with Cllr, the EER results indicate that UM produces less stable performance 
compared with Cantonese /a/, although it is a better speaker discriminant; over 75% of EERs 
for UM are lower than the EERs for /a/.  
 
 
4.2 Experiment 2: Varying test speakers  
 
In experiment 2, training and reference speakers were fixed, while different samples of test 
speakers were used in each replication. The summary results are shown in Table 2. As in 
experiment 1, Figure 5 shows the two variables tested here are affected differently by varying 
the test speakers. The Cllr for Cantonese /a/ ranges from 0.58 to 0.86 across the 100 replications. 
The median is 0.74 while the interquartile range is 0.08, indicating that 50% of Cllrs are within 
a small range. Similar to experiment 1, all the Cllrs of /a/ are lower than one, indicating that 
some speaker discriminatory information is being captured. The minimum and maximum Cllrs 
for UM are 0.33 and 0.94, which represents considerably more variability than that found for 
/a/. The median for UM, however, is 0.67, indicating the overall speaker discriminatory power 
for UM is greater than for /a/.  
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Figure 5: Cllr and EERs for /a/ and UM varying test speakers in each replication. 

 
A somewhat different pattern is found for EER (right panel in Figure 5). Wider ranges of EER 
are found for /a/ than for UM. The overall and interquartile range for /a/ are 19.9% and 6.4% 
respectively, while they are 10.5% and 4.1% for UM. Again, the overall speaker discriminatory 
power is better for UM than for /a/. However, taken together with the Cllr results, the EER 
results suggest that while UM produces fewer errors overall, and more stable performance, 
there is greater variability in the magnitude of the errors that it produces.  
 

 Cllr  EER (%)  
 /a/ UM /a/ UM 
Minimum 0.58 0.33 16.8 10.0 
1st quartile 0.70 0.57 23.7 15.1 
Median 0.73 0.67 27.0 15.1 
3rd quartile 0.78 0.76 30.1 19.2 
Maximum 0.86 0.94 36.7 20.5 
Interquartile range 0.08 0.19 6.4 4.1 
Overall range 0.28 0.61 19.9 10.5 

Table 2: Minimum, maximum, median, mean, first and third quartiles of Cllrs and EERs of /a/ 
and um in experiment 2. 

 
 
4.3 Experiment 3: Varying reference speakers 
 
In experiment 3, training and test speakers were fixed across the 100 replications. A different 
set of reference speakers was sampled in each replication. The results are summarised in Table 
3. The left panel of Figure 6 shows the Cllr boxplots for /a/ and UM. In both cases, the range of 
values is extremely small. /a/ yielded an overall Cllr range of between 0.66 and 0.77, while the 
interquartile range was 0.03. UM yielded an overall range of 0.14 and an interquartile range of 
0.03. The right panel of Figure 6 shows the EERs. EER ranges from 23.2% to 30.5% for /a/ 
and from 10.0% to 15.1% for UM. The interquartile range for /a/ (1.7%) is lower than that for 
UM (4.1%), while the overall range of /a/ (7.6%) is higher than that of UM (5.1%). As in the 
previous experiments, general speaker discriminatory power is much better for UM than for 
/a/, with the EERs for UM lower than those of /a/ in each of the 100 replications.  
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Figure 6: Cllrs and EERs for /a/ and UM varying reference speakers in each replication. 

It is worth noting that the EER boxplot of UM has a very short lower whisker and no upper 
whisker. This is because the test speakers were fixed and, as such, there are only a discrete 
number of EERs possible given the number of speakers used. The smaller the number of 
speakers used, the fewer the number of possible EERs. Most of the EERs for UM are gathered 
around 14.9%.  
 

 Cllr  EER (%)  
 /a/ UM /a/ UM 
Minimum 0.66 0.40 23.2 10.0 
1st quartile 0.69 0.44 26.1 11.1 
Median 0.70 0.46 26.7 14.9 
3rd quartile 0.72 0.47 27.7 15.1 
Maximum 0.77 0.54 30.5 15.1 
Interquartile range 0.03 0.03 1.7 4.1 
Overall range 0.11 0.14 7.6 5.1 

Table 3: Minimum, maximum, median, mean, first and third quartiles, interquartile ranges and 
overall ranges of Cllrs and EERs for /a/ and UM in experiment 3. 

 
Experiment 3 shows that using different reference speakers produces fairly stable system 
performance compared with Experiments 1 and 2. UM and /a/ yielded a similar system stability 
in terms of both Cllr and EER. Comparing with experiment 2, the system stability is less 
sensitive to different make-ups of reference speakers as long as they come from a matched 
dialectic group.  
 
 
4.4 Experiment 4: Vary training speakers 
 
In experiment 4, test and reference speakers were fixed throughout the 100 replications. 
Speaker randomisation was carried out by assigning a different set of speakers into the training 
data in each replication. Figure 7 shows the Cllrs for /a/ and UM across the replications, and the 
distributions are summarised in Table 4. The EER was not reported in detail in experiment 4, 
because the calibration coefficients derived from the training data only affect the Cllr. Thus, the 

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

/a/ UM
varying reference speakers

Lo
g 

LR
 C

os
t (

C
llr
)

10

20

30

40

/a/ UM
varying reference speakers

EE
R

(%
)



 13 

EER would be the same across all replications where the test and reference speakers are fixed. 
Both variables generally produced a very narrow ranges of Cllr values when varying the training 
speakers; narrower than ranges reported in experiments 1, 2 and 3. The overall and interquartile 
ranges of Cllrs are 0.12 and 0.01 for /a/. For UM, the interquartile range was 0.05. The overall 
range for UM, however, was 0.4 due to an outlying replication producing a Cllr 0f 0.89.  
 

 
Figure 7: Cllrs of /a/ and um by varying training speakers in each replication. 

 Cllr  
 /a/ UM 
Minimum 0.76 0.49 
1st quartile 0.76 0.53 
Median 0.77 0.57 
3rd quartile 0.77 0.58 
Maximum 0.88 0.89 
Interquartile 
range 

0.01 0.05 

Overall 
range 

0.12 0.40 

 

Table 4: Minimum, maximum, median, mean, first and third quartiles, interquartile ranges and 
overall ranges of Cllrs of /a/ and UM in experiment 4.  

 
Experiment 4 shows that varying training speakers has a very limited effect on system stability. 
/a/ produced a marginally more stable system performance than UM in terms of Cllr. This is 
possibly due to the fact that there were only 20 training speakers used for UM, compared with 
the 30 training speakers used for Cantonese /a/. 
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5 Discussion  
 
In this section, the results from the four experiments are discussed. Figure 8 shows the Cllr 
(upper panels) and EER (lower panels) values across the 100 replications for Cantonese /a/ and 
SSBE UM from the four experiments. However, the discussion below focuses on Cllr as it is 
the most widely used metric to evaluate system performance and stability and provides the 
most coherent story across experiments.  
 

 
 
Figure 8: Cllr (top) and EER (bottom) values across the four experiments for /a/ (left) and UM 
(right). 

 
General findings 
 
Considerable variation was found across replications when varying the speakers in all three 
sets, with Cllr values ranging from 0.6 to 0.97 for Cantonese /a/ and from 0.32 to 1.33 for SSBE 
UM. The variability in performance, especially for UM, is as wide as the variability one would 
expect to see between variables and between populations; the difference between what would 
be considered very good performance versus very bad performance. Therefore, these results 
show that caution should be exercised when judging the speaker discriminatory power of a 
variable based on a single configuration of speakers in the training, test and reference sets. This 
is especially true since many LR-based studies use the same number of (or fewer) speakers 
than used here. Using different, but still representative, speakers could affect system 
performance substantially, depending on who exactly those speakers are. However, further 
examination of the results from the final three experiments in this study show that variability 
in system performance is almost exclusively due to the effects of varying the test speakers. For 
both variables, the range of Cllr values when varying only the test speakers was almost as wide 
as that when varying speakers in all three sets. By comparison, the variability in Cllr as a 
function of the make-up of the reference and training sets was extremely small. Thus, as long 
as the sets are of a sufficient size (in these experiments, over 20 speakers), the specific speakers 
used for the training and reference data have little effect on the overall performance of the 
system. 
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There were some differences in the results for the two variables examined here. Cantonese /a/ 
was less sensitive to speaker sampling than SSBE UM, reflected in a narrower range of Cllr 
values across the four experiments. One reason for this may be the inherent speaker-
discriminatory power of /a/ compared with UM. The median Cllr value for UM in experiment 
1 was 0.54, compared with 0.74 for Cantonese /a/. The lower end of the distribution of Cllr 
values for UM also shows that it has the potential to produce very good performance with 
certain configurations of speakers. This shows that inherently better speaker discriminants will 
produce more variable system performance because they have the potential to produce a wider 
range of results depending on which speakers are being used (principally, in the test set). 
However, poorer speaker discriminants, such as /a/, will produce poor system performance 
irrespective of the speakers used. This relationship between speaker discriminatory power and 
sensitivity to speaker sampling replicates findings reported in Wang et al. (2019) based on 
simulated data. A further contributing factor may also be that more speakers were available for 
the analysis of /a/ (30 speakers per set) compared with UM (20 speakers per set). It is likely 
that system performance is more stable when the number of speakers is higher.   
 
Implications 
 
The results presented here have important implications for issues of uncertainty, decision-
making, and subjectivity and objectivity in data-driven forensic comparison. Specifically, they 
provide new insights on how best to go about testing and validating FVC systems in casework 
in order for the results to be useful to both the expert, and more importantly, to the trier-of-fact.  
 
The general finding relating to the stability of system validity when using different sets of 
training and reference speakers is extremely positive for casework. The training and reference 
sets are the core elements of any system; the test data are simply intended to be ‘unseen’ 
representative speakers to assess how well the system performs, and are not part of the system 
per se. The fact that performance is so insensitive to speaker variability in the training and 
reference sets means that the expert can be relatively confident about the transferability of the 
system as long as the speakers used are broadly representative of the relevant population, i.e. 
the uncertainty as a function of the make-up of the training and reference sets is low. The lack 
of variability in system performance when varying the training and reference sets is all the 
more impressive given that we are working with relatively small, manageable numbers of 
speakers (as low as 20 per set). 
 
However, the key source of uncertainty in system performance derives from the make-up of 
the test set. Therefore, it is essential that the expert carefully considers the speakers that are 
used for testing, since this can have a substantial effect not only on the system that an expert 
decides to use in a case, but also may over- or under-estimate the true validity to the court, 
potentially leading to incorrect decisions being made by the trier-of-fact. One way in which to 
deal with this issue is to use data that are more representative of the ‘type’ of voices in the case 
– the issue here is not one of finding the best configuration of test speakers to produce the 
optimal performance, but rather to find a set that produces a validity measure that is 
representative for the case. It has been argued that systems should be evaluated using 
recordings that reflect the conditions of the case at trial (Enzinger and Morrison 2017; Enzinger, 
Morrison and Ochoa 2016). In terms of speaker characteristics, this is taken to mean that the 
speakers used are representative of the relevant population, often defined broadly by sex and 
language (Rose 2004). Clearly, based on the variability reported in our studies, this is 
insufficient, especially where the variable(s) can potentially provide good speaker 
discrimination and/or the number of speakers is small. Identifying a subset of a database of 
speakers who are in some way ‘more similar’ to the offender (akin to the suggestion in 
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Morrison, Ochoa and Thiruvaran 2012, and procedures in some automatic systems) is likely to 
produce more representative results. However, this involves making pragmatic but subjective 
decisions: either based on narrower demographic properties of the offender (although, of 
course, we can’t know these properties for certain, since the identity of the offender is the very 
question at stake) or using some measure to define speaker similarity. This is not necessarily 
problematic. As highlighted by the court in R v T [2010] “the probability that is quoted (by the 
expert as a conclusion in a case) … will inevitably be a personal probability and the extent to 
which the data influence that probability will depend on expert judgement” (at para 80). 
 
Having tailored test data is, in our view, the preferred approach to reducing the uncertainty in 
the performance of a system. This allows the expert to have a better sense of how the system 
will perform in the specific case. However, as highlighted in Hughes and Foulkes (2015), there 
will always be some mismatch between the data used for building and evaluating a system and 
the case data. It is likely, therefore, to be fruitful to examine ways to further reduce uncertainty 
by incorporating it into the LR computation itself; for an example based on sample size see 
Morrison and Poh (2018). Alternatively, we consider it a minimal requirement that both 
researchers and experts undertake speaker sampling of the kind described in this study in order 
to understand the potential range within which a system performs. This may not provide case-
specific information, but will provide insights into how certain we can be about the 
performance of a system in general. For instance, the range of values produced for UM in this 
study means that we would need to be extremely cautious about making generalisations about 
speaker discriminatory power or the usefulness of such a system in casework. 
 

6 Conclusion  
 
The current study has explored the effect of speaker sampling in LR-based FVC through four 
experiments. Experiment 1 explored the stability and reliability of both the system and 
segmental variables, which shows that the same segmental variable might give very different 
performance just by rearranging speakers in the training, test and reference data. Experiments 
2 to 4 examined the variability in system performance when separately varying the training, 
test and reference speakers. Results showed that the key source of variability in system 
performance is the make-up of the test set. This is positive for casework since it suggests that 
the make-up of the training and reference sets, the key elements of a system, have little effect 
on system performance.  
 
However, as discussed by Curran (2016) and others, consideration should also be given to 
dealing with uncertainty in system performance. Here we see the importance of uncertainty 
specifically in the test set, which can be established either by using a more tailored subset of 
test speakers or, minimally, reporting the range of values produced through speaker sampling 
of the sort described here. In this way the analyst can provide an estimate of the range of 
validity values the system can produce, and thus provide a means to record the precision or 
uncertainty in the LR calculations. Providing such information is critical for the trier-of-fact to 
evaluate the evidence provided by the expert.  
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