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ABSTRACT 
 

This study considers the role of different cognitive units in sound change: phonemes, 

contextual variants and words. We examine /u/-fronting and /j/-dropping in data from three 

generations of Derby English speakers. We analyse dynamic formant data and auditory 

judgments using mixed effects regression methods including generalised additive mixed 

models (GAMMs). /u/-fronting is reaching its end-point, showing complex conditioning by 

context and a frequency effect that weakens over time. /j/-dropping is declining, with low-

frequency words showing more innovative variants with /j/ than high-frequency words. The 

two processes interact: words with variable /j/-dropping (new) exhibit more fronting than 

words that never have /j/ (noodle) even when the /j/ is deleted. These results support models 

of change that rely on phonetically detailed representations for both word- and sound-level 

cognitive units.  
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1. Introduction 

 

The vowel /u/ (e.g. goose) is undergoing change in many English dialects, shifting from a 

back tongue position to a front one. This paper focuses on the cognitive aspects of sound 

changes such as /u/-fronting and asks: how are they reflected in speakers’ cognitive 

representations? And, conversely, how do cognitive representations impact their unfolding? 

The nature of the cognitive units underlying sound change is one of the longest-standing 

debates in historical linguistics: the so-called Neogrammarian controversy, which asks: ‘is it 

sounds or words that change?’ (Labov, 2010: 260). The Neogrammarian view is that the 

fundamental units of change are phonemes and their contextually conditioned realisations 

(Labov, 2010). The alternative stance is that specific words can and do exempt themselves 

from general trends, leading to changes that diffuse gradually across the lexicon (Bybee, 

2001; Phillips, 2006). 

 These views are associated with two different approaches to the nature of 

phonological representations. Modular approaches to phonology (Kiparsky, 1995; Bermúdez-

Otero, 2007) assume that lexical representations consist of discrete abstract units (e.g. 

phonemes). When these units are passed on to phonetic implementation rules, information 

about their lexical identity is no longer available, and thus cannot influence their phonetic 

realisation. Modular approaches therefore predict that gradient sound changes (like /u/-

fronting) cannot show lexical conditioning. This prediction does not extend to categorical 

changes, where a discrete phonological unit is replaced by a different one (e.g. th-fronting in 

English, where /θ/ is replaced by /f/). Categorical alternations can be represented solely via 

abstract units, and thus may show lexical conditioning. 

The modular view is challenged by approaches that allow phonetic detail in lexical 

representations (Pierrehumbert, 2002), predicting that lexical conditioning can also arise in 
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phonetically gradient changes. Such approaches are sometimes referred to as episodic or 

exemplar-based, since they often model phonetically detailed representations using 

collections of episodic memories. We refrain from using these terms: our focus is on how 

much phonetic detail is present in lexical and categorical representations, not how this detail 

is stored. 

 This study considers the roles of different cognitive units and their interactions in 

change: phonemes, contextual variants and words. The emphasis is on how these units 

manifest themselves in phonetically gradient change, though we also consider a change that 

may be categorical. We examine two phenomena in Derby English: /u/-fronting and /j/-

dropping (variable deletion of /j/ before /u/ in e.g. new: /nu/ vs. /nju/). Our study builds on 

work that investigated these phenomena separately in relation to cognitive units (Labov, 

2010; Phillips, 2006), but is unique in considering both their interaction and their unfolding 

over time. It is based on a set of nearly 3,000 acoustic measurements and auditory 

annotations representing three generations of speakers, and presents a dynamic analysis of 

vowel trajectories using generalised additive mixed models (GAMMs; Wood, 2006). 

 The rest of this section describes /u/-fronting and /j/-dropping (1.1), summarises work 

on cognitive units in change, and presents our predictions (1.2). Section 2 outlines our 

methodology. Section 3 presents an analysis of changes and structural/lexical influences in 

/u/-fronting, /j/-dropping and their interaction. Section 4 relates our findings to the issue of 

cognitive units in change. 
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1.1. /u/-fronting, /j/-dropping and Derby English 

 

The vowel in English words like goose rarely has a phonetically back quality ([u]) for native 

speakers, instead showing fronted variants from [ʉ] to [y]. /u/-fronting is a widespread 

change found across the English-speaking world. Like most vowel shifts, /u/-fronting is 

phonetically gradient.  

 A /j/ before /u/ may be deleted after coronals. Deletion is found widely, but varies 

across dialects. Most British varieties have variable or categorical loss after /θ,s,z,l/ (enthuse, 

suit, azure, lewd), but retain /j/ after /t,d,n/ (tune, duty, new). In North America, /j/ deletion is 

the norm in all of these contexts. Most accounts of /j/-dropping treat it as a categorical 

process, though rarely with acoustic or articulatory support. 

 Derby English is a variety spoken in the north midlands of England. Like many other 

varieties, it exhibits /u/-fronting. However, it is fairly exceptional among British varieties in 

that it has variable /j/-dropping after /t,d,n/. This provides a unique opportunity to explore the 

interaction between these processes. 

 

1.2. Phonemes, contexts and words in sound change 

 

1.2.1 /u/-fronting 

Figure 1 provides a visual summary of the intersecting levels of representation that are 

particularly relevant to /u/-fronting.  
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Figure 1: Three intersecting levels of representation relevant to /u/-fronting. See text for details. 
 

The outermost solid box represents the phoneme /u/. The figure shows two contextual 

realisations of /u/ (dashed boxes): /u/ preceded by /j/ ([ju]) and /u/ in other contexts ([u]). The 

discussion below also highlights other important contexts such as a following /l/ in the same 

syllable. For the most part, specific words (dotted ellipses) are consistently realised with one 

of these contextual variants: for instance, cube is always [kjub], while noodle is always 

[nudl]. To streamline discussion we refer to words that always have /j/ as CUBE, and words 

that never have /j/ as NOODLE. Due to variation in /j/-dropping, a small set of words may be 

realised either with or without /j/. These words therefore span both contexts. We refer to 

variable words as N[j]EW when they contain /j/, and N[∅]EW when they do not.  

Gradient sound changes provide ample evidence for the crucial role of phonemes and 

contextual variants, to the point where ‘the finding that a given change follows a regular 

Neogrammarian path is not a publishable result’ (Labov, 2010: 259). Changes that are 

complete usually affect all words with a given sound, and words with similar phonetic 

contexts tend to change in parallel, attesting to the ‘binding force of the phoneme’ (Labov, 

2010). Such patterns can be accounted for by assuming that it is the phonetic details 

associated with abstract phonemic units that change. This account originates from modular 

approaches to sound change (Kiparsky, 1995), but has also been incorporated into a range of 
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‘hybrid models’, which propose that both abstract (e.g. phonemes) and less abstract units 

(e.g. words) are associated with phonetic detail (Pierrehumbert, 2002, 2016). Different 

contextual variants of a phoneme occasionally follow divergent paths, suggesting that such 

variants also have a degree of autonomy in phonetic realisation.  

What role do phonemes and contextual variants play in /u/-fronting? /u/-fronting has 

been noted to display sensitivity to context. Words with preceding /j/ typically have the most 

front realisations of /u/, followed by words with preceding coronals/palatals (e.g. noodle, 

June). Conversely, a following /l/ in the same syllable (e.g. school) inhibits /u/-fronting. 

These patterns manifest both as synchronic variation and as long term change. Based on these 

contextual effects, we make the following predictions relating to the tension between 

phonemes and contextual variants: 

 

(P1) Contextual effects in /u/-fronting: different contexts will show different degrees 

of fronting, due to phonetic effects. They may develop in parallel in accordance with 

the notion of phoneme-level binding, or they may diverge over time. Contexts of 

particular interest are: (i) following /l/, (ii) preceding /j/, (iii) other preceding 

environments favouring fronting, and (iv) preceding environments that inhibit 

fronting. 

 

Sound change can also be subject to lexical conditioning, proceeding at different rates in 

different words. For instance, /æ/-tensing in the US Mid-Atlantic region affects bad, mad but 

not sad (Labov, 2010). /t,d/ deletion in American English progresses faster in frequent words 

(Bybee, 2001); and the voicing of medial /t/ in New Zealand English is affected by a range of 

lexical factors, including word frequency and whether a word is typically used by younger or 

older speakers (Hay and Foulkes, 2016).  
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The possibility of lexical conditioning in phonetically gradual changes (like /u/-

fronting) remains debated. This is partly due to the fact that studies investigating lexical 

effects rarely rely on continuous acoustic or articulatory measurements. Labov (2010), 

however, examines several vowel shifts in the US (including /u/-fronting) and fails to find 

robust lexical effects. This null finding seems to support modular approaches without 

phonetic details in lexical representations. However, Hay et al. (2015) do find lexical 

conditioning in vowel shifts in New Zealand English: low-frequency words change faster. 

There is an additional complication regarding lexical effects in phonetically gradual 

changes. Certain online speech production processes are lexically specific: for instance, 

frequent and predictable words tend to be reduced (Bell et al., 2009). Since these processes 

apply online, they can also be accommodated in modular feedforward models where lexical 

representations are devoid of phonetic detail – reduction is not explicitly encoded in lexical 

representations, but is added in the course of word production. Importantly, the size of such 

purely online effects should stay stable in the context of a sound change, and frequency-

related phonetic differences among words should therefore not increase or decrease over 

time. If, on the other hand, reduced variants are fed back into lexical representations, the 

phonetic targets for words experiencing different degrees of reduction will shift at different 

rates, leading to changes in the size of frequency effects (Hay & Foulkes, 2016). 

Let us turn to our predictions about lexical effects in /u/-fronting. A recurring factor in 

word-specific changes is lexical frequency, though the direction of frequency effects is not 

always the same: high-frequency words lead certain changes (e.g. voicing of medial /t/; Hay 

& Foulkes, 2016), while low-frequency words lead others (e.g. vowel shifts; Hay et al., 

2015). In the current case, the former scenario seems more likely. /u/-fronting is arguably a 

consequence of phonetically natural factors such as coarticulation with surrounding 

coronal/palatal consonants (Harrington et al., 2011), and the effects of such factors are likely 



8 

to be exaggerated in high-frequency words that are produced in a reduced form. Therefore, 

we make the following prediction: 

 

(P2) Frequency effects in /u/-fronting: high-frequency words should lead. This effect 

may increase or decrease over time. 

 

Figure 1 suggests an even more intriguing word-specific prediction. Words such as new show 

variable /j/-dropping. A preceding /j/ is a strong favouring environment for /u/-fronting, 

which means that N[j]EW should show more fronting than N[∅]EW. However, if phonetic 

details are stored in word-specific representations, the distribution underlying the production 

of /u/ in variable words will be based partly on fronted N[j]EW tokens and partly on less 

fronted N[∅]EW tokens. This may result in a ‘regression to the mean’, whereby N[∅]EW tokens 

show more fronting than non-alternating words without /j/ (NOODLE), while N[j]EW tokens 

show less fronting than non-alternating words with /j/ (CUBE). In other words, we may see a 

word-level binding force that acts against the differential phonetic pressures in N[j]EW versus 

N[∅]EW. Similar word-level binding effects have been reported for the retraction of /u/ before 

/l/, where alternating forms such as fool~fooling both show some retraction despite the fact 

that medial /l/ typically fails to cause retraction in other non-alternating words (e.g. hula; 

Strycharczuk and Scobbie, 2016). 

 

(P3) Word-level binding in /u/-fronting: N[j]EW will show less fronting than CUBE, 

while N[∅]EW will show more fronting than NOODLE.  
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1.2.2 /j/-dropping 

The case of /j/-dropping is more complicated than that of /u/-fronting due to uncertainty 

around whether it is categorical or phonetically gradient. Previous work has analysed /j/-

dropping categorically, coding for presence/absence of /j/, but there are claims that the 

phenomenon itself is gradient (Phillips, 2006). This is, of course, a crucial distinction: finding 

lexical effects for /j/-dropping would only constitute evidence for word-specific phonetic 

detail if the phenomenon is gradient. We cannot address this question, adopting here a 

categorical analysis for what may, in fact, be a gradient phenomenon. This decision is 

motivated partly by the difficulty of finding a quantitative measure of ‘/j/-fulness’, and partly 

by a desire to make the analysis of the interaction between /j/-dropping and /u/-fronting more 

straightforward. Future work may determine whether /j/-dropping is gradient or categorical. 

Phillips (2006) reports significant effects of word frequency on /j/-dropping in 

southern US English, with low-frequency items leading. Bybee (2000) argues that this effect 

follows from dialect borrowing from varieties without /j/: low-frequency items like tunic are 

less entrenched in memory than high-frequency items like new, and are therefore more 

vulnerable to influence from other varieties. Phillips (2006) provides a different account that 

also relies on the notion of memory entrenchment. She argues that the pressure to lose /j/ 

comes from the markedness of initial consonant sequences such as /tj,dj,nj/; low-frequency 

words with weaker representations are less resistant to this pressure. 

Based on these findings, there are two possible predictions about the role of word-

frequency in /j/-dropping in Derby English. 

 

(P4a) /j/-dropping due to markedness: If /j/-dropping is due to the markedness of 

clusters with /j/, Derby English should mirror southern US English, with low-

frequency items leading the change. 
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(P4b) ‘/j/-restoration’ through dialect borrowing: The standard dialect in England has 

no /j/-dropping after /t,d,n/ (Wells, 1982). If dialect borrowing affects low-frequency 

items first, we expect more /j/-dropping in high-frequency words, which should retain 

the local pattern due to their representational strength. 

 

 

2. Methods 

 

2.1. Materials 

 

Our data come from recordings made in Derby in 1995 (Milroy et al., 1996) and 2010 

(Haddican, 2014). They contain unscripted conversations and word-list data. There are three 

generations: older (19 speakers born 1913–50), middle (10 speakers born 1968–81) and 

younger (16 speakers born 1983–92).  

 

2.2. Data processing 

 

Using automatic methods (LaBB-CaT: Fromont & Hay, 2008; Penn Aligner: Yuan & 

Liberman, 2006), we extracted all /u/ words: 2,912 tokens after discarding high-frequency 

function words and problem cases. Words with preceding contexts that trigger near-

categorical /j/-dropping such as suit and enthuse were excluded. 

We used Formant Editor (Sóskuthy, 2014) to extract and manually correct F2 (second 

formant) trajectories. F2 is a reliable acoustic correlate of articulatory fronting. Each 

trajectory consists of 11 time-normalised measurements including the onset and offset points. 

/j/ was included in the trajectory where present. The first two authors made separate auditory 
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judgments about the presence of /j/ for all words with variable /j/. We opted for auditory 

coding criteria in order to minimise artefacts in our acoustic analysis (i.e. using F2 alone to 

determine both the presence of /j/ and the degree of fronting in the vowel), and we also 

exploited auditory cues not embedded in the vocalic portion (e.g. affrication and 

palatalisation of the preceding consonant). Disagreements were resolved through discussion.  

A subset of 100 randomly chosen tokens were reanalysed blindly to estimate the reliability of 

our judgments. The raters agreed on 86% of tokens (Cohen’s Kappa = 0.724), and the 

agreement between the original and new ratings was similarly high (84% for each rater, 

Cohen’s Kappa = 0.673 and 0.682). 

We normalised formant values to attenuate between-speaker differences (using 

Fabricius et al., 2002, implemented via Kendall & Thomas, 2009). Results are presented on a 

normalised scale, where a unit of one corresponds to the F2 difference between [i] and [u]. 

 

2.3. Data analysis 

 

We fit three separate sets of statistical models to test our predictions. The first addresses P1 

and P2, the second addresses P3 and the third addresses P4. Below is a brief summary of 

these models; more detail is provided in the results section. 

 

M1. GAMMs that model F2 trajectories in /u/ as a function of age, context and frequency. 

(outcome variable: continuous F2 values) 

M2. GAMMs that model F2 trajectories, looking at whether N[∅]EW differs from NOODLE, 

and whether N[j]EW differs from CUBE. (outcome variable: continuous F2 values) 

M3. A mixed effects logistic regression model that predicts the presence of /j/ as a 

function of age and frequency. (outcome variable: binary presence/absence of /j/) 
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GAMMs extend mixed effects regression models by allowing the inclusion of smooth terms 

and random smooths in addition to linear terms (Wood, 2006; Winter and Wieling, 2016; 

Sóskuthy, 2016). Smooth terms capture non-linear effects without requiring pre-specification 

of the degree of non-linearity. Random smooths extend the same principle to random effects, 

fitting separate curves at each value of a grouping variable. 

GAMMs are well suited to the analysis of time-varying speech data, as they can 

capture variation not only in trajectory height but also in trajectory shape. For example, age 

may affect average F2 (e.g. higher F2 for younger speakers across the entire trajectory), the 

shape of the trajectory (e.g. flatter trajectories for younger speakers), or both. Our GAMMs 

use separate terms to capture these two types of effects: parametric main terms for height 

effects, and smooth terms for shape effects. The latter are essentially interactions between 

position along the trajectory and one or several other variables such as age or frequency. 

Since inspecting main and smooth terms separately may lead to false positives, we 

first evaluate their significance jointly using model comparisons between a full model and 

one that excludes both terms (the overall comparison; Sóskuthy, 2016). When the overall 

comparison is significant, we also perform more specific shape comparisons by excluding the 

shape term only. 

 The results are presented in the form of tables summarising the model comparisons, 

and model prediction plots. Since GAMMs cannot be interpreted solely using model 

summaries, the plots are not purely illustrative: they play a central role in the discussion. 

Space constraints prohibit a presentation of full model summaries. Instead, we focus on those 

terms that are directly relevant to our predictions. 
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3. Results 

 

3.1. Overall trends in /u/-fronting 

 

We first examine overall trends in /u/-fronting, with particular focus on the effects of age, 

frequency and preceding context (P1, P2). Only words that are consistently realised with or 

without /j/ are included (i.e. CUBE/NOODLE). Separate models were fit for tokens not followed 

by /l/ (2,213 tokens) and tokens followed by /l/ (291 tokens). Lateral contexts with a 

following vowel (e.g. schooling) were excluded. 

The outcome variable for both models is normalised F2. The following predictors are 

included in the non-lateral model: age (older, middle, young), log wordform frequency from 

the British National Corpus (Burnard, 2007), preceding environment (/j/; favouring: coronal, 

palatal, velar;1 non-favouring: all other consonants), type of recording (word list vs. 

conversation), sex, and trajectory duration. The lateral model includes the same predictors 

except preceding and frequency, as almost all pre-/l/ tokens are examples of the lexeme 

school. The non-lateral model includes height and shape effects for age, frequency, 

preceding and all their interactions. Therefore, it can capture changes in /u/, frequency 

effects on /u/, and also changes in the size of frequency effects. Both models include random 

smooths by speaker, wordform and following segment. They also include AR1 residual 

error models to control for autocorrelation within trajectories. 

Table 1 shows the results of model comparisons for the non-lateral model. The 

comparisons always include the full model, incorporating all terms and interactions. The 

other model is a nested model. For ‘overall’ comparisons, the nested model excludes both the 

main term (height) and the smooth term (shape) corresponding to the predictor, as well as all 

                                                
1 Velars do not universally favour fronting, but they had a strong effect in our data. 
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higher order interactions containing these terms. For instance, the comparison in row 1a is 

between the full model and a model that excludes all terms with preceding (e.g. age × 

preceding, etc.). It tests whether preceding as a whole improves the model fit. For ‘shape’ 

comparisons, the nested model retains the main term but excludes the smooth term and all 

higher order interactions containing the smooth term. Such comparisons (e.g. row 1b) test 

whether the model is improved by including information about the effects of a predictor on 

trajectory shapes. Shape comparisons were only performed where the overall comparison was 

significant. 

 

 
Table 1: Model comparisons for the non-lateral model. First column: the type of comparison (cf. 2.3) and terms 
dropped in the nested model; second column: difference in log-likelihood; third column: difference in degrees of 
freedom; final column: p-value. 
 
Table 1 provides evidence for age (2a,b), frequency (4a,b) and contextual effects (1a,b). /u/-

fronting proceeds differently across contexts (3a), which is also manifested in trajectory 

shape (3b). The overall size (5a) but not the shape (5b) of the frequency effect changes 

significantly over time. 

Figure 2 shows model predictions as a function of age, frequency and preceding. 

 

 COMPARISON χ² DF p (χ²) 

1a overall: preceding 230.4 40 < 0.0001 
1b shape: preceding 119.7 30 < 0.0001 
2a overall: age 179.6 38 < 0.0001 
2b shape: age 96.4 21 < 0.0001 
3a overall: age × preceding 51.3 24 < 0.0001 
3b shape: age × preceding 27.7 14 < 0.0001 
4a overall: frequency 44.0 36 < 0.0001 
4b shape: frequency 20.3 21 < 0.0001 
5a overall: age × frequency 29.8 21 < 0.0001 
5b shape: age × frequency 8.1 12 0.18 
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Figure 2: Prediction plot for the non-lateral model. Trajectories are shown for preceding /j/ (blue), favouring 
(orange) and non-favouring contexts (green). The panels show different combinations of age (rows) and 
frequency (columns). The low and high-frequency panels represent predictions at the 10th and 90th percentiles 
of frequency. 
 
 
The plots show a flattening and raising of trajectories with /j/ (i.e. the change mainly affects 

the vocalic part of the sequence) and substantial overall raising in the favouring and non-

favouring groups. These changes are slowing down, with greater differences between the 

older and middle generations than between the middle and younger generations. The older 

generation also exhibits a strong frequency effect across all environments, with frequent 

words showing the highest degree of fronting. The frequency effect mostly disappears in later 

generations ((5) in Table 1).  

 Table 2 summarises the lateral model. 
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Table 2: Model comparisons for the lateral model. 
 
 
The comparisons suggest a significant age effect for pre-/l/ tokens (1), which manifests at 

least partly in the shape of the trajectories (2). Figure 3 illustrates this effect. 

 
 

 
 

Figure 3: Prediction plot for the lateral model.  
 
 
With normalised F2 between 0.6–0.8, /u/-fronting before laterals is far behind other contexts 

(cf. F2 of 1.0–1.6 in Figure 2). However, some fronting does occur, especially near the end of 

the trajectory. The size of the change is only a fraction of that seen in other positions. 

 

3.2. The effect of /j/-variation on /u/-fronting 

 

Our third prediction has two components: (i) words with variable /j/-dropping (e.g. new) may 

show more fronting than similar words without /j/ (NOODLE with preceding /t,d,n/) even when 

/j/ is not present (N[∅]EW); and (ii) they may show less fronting than words with an invariable 

/j/ (CUBE) when the /j/ is present (N[j]EW). We therefore fit separate GAMMs to compare (i) 
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 COMPARISON χ² DF p (χ²) 

1 overall: age 16.9 7 <0.0001 
2 shape: age 16.4 3 <0.0001 

 



17 

variable and invariable words without /j/ (665 tokens) and (ii) variable and invariable words 

with /j/ (598 tokens). The outcome variable for both models is normalised F2. The predictor 

that separates variable and invariable words is referred to as /j/-variation. The models test for 

height and shape effects of /j/-variation (differences between N[∅]EW vs. NOODLE and N[j]EW 

vs. CUBE), age and their interaction. They also include type of recording, sex and trajectory 

duration as control variables; random smooths by speaker × /j/-variation (separate random 

smooths for variable and invariable words within each speaker), wordform and following 

environment; and an AR1 error model. 

 Tables 3 and 4 show the model comparisons. 

 

 
Table 3: Model comparisons for words with [u]. 
 

 
Table 4: Model comparisons for words with [ju]. 
 
 

There are significant differences between variable and invariable words without /j/ (Table 3) 

but not between variable and invariable words with /j/ (Table 4). The models do not indicate 

any age effects, thus we only show model predictions for younger speakers (Figure 4). 

 

Words with [u] (N[∅]EW vs. NOODLE): 
 COMPARISON χ² DF p (χ²) 

1 overall: /j/-variation 8.0 8 0.044 
2 shape: /j/-variation 7.2 5 0.014 
3 overall: /j/-variation × age 1.0 5 0.851 

 

Words with [ju] (N[j]EW vs. CUBE): 
 COMPARISON χ² DF p (χ²) 

1 overall: /j/-variation 0.4 8 0.999 
2 overall: /j/-variation × age 0.1 5 0.999 
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Figure 4: Prediction plot for young speakers for words with [u] (left) and words with [ju] (right).  
 
 
The plots illustrate that variable words where /j/ is dropped (N[∅]EW) have higher F2 than 

words that never have /j/ (NOODLE). The difference manifests mainly near the end of the 

trajectory, which is supported by the significant shape effect in Table 4. In other words, the /j/ 

portion of the variable versus invariable trajectories has the same level of frontness, but the 

vowel itself is more fronted in variable words. There is no difference between variable words 

where /j/ is retained (N[j]EW) and words that always have /j/ (CUBE). 

 

3.3. Overall trends in /j/-dropping 

 

To test P4, we fit a mixed effects logistic regression model to words with variable /j/ (408 

tokens). The outcome variable is the presence of /j/, while the main predictors are age, 

frequency and their interaction. The model also controls for type, sex and preceding context 

(/t,d,n/), and includes random intercepts by speaker and wordform and random slopes for 

the main predictors. 

 Table 5 shows model comparisons. 
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Table 5: Model comparisons for the /j/-dropping model. 
 
 
All three model comparisons are significant, suggesting that age and frequency both play a 

role in /j/-dropping, and also that they interact. This is supported by Figure 5, which shows 

the predicted probabilities for the different age groups in low/high-frequency words. (The 

confidence intervals are asymmetrical since the predictions are transformed into probabilities 

from log-odds. This compresses distances around the top and bottom of the scale.) 

 

 
Figure 5: Predicted probabilities of /j/ by age group for words at the 10th (left) and 90th frequency percentiles 
(right). Dots = model predictions; lines = 95% confidence intervals. 
 
 
The probability of /j/ increases in low-frequency words. For high-frequency words, we see 

fluctuations but no consistent change. The U-shaped pattern of change should be interpreted 

with caution, given the width of the confidence intervals. 
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3 age × frequency 7.8 2 0.02 
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4. Discussion and conclusions 

 

Let us briefly summarise the findings. Where /u/ is not followed by /l/, fronting occurs in all 

contexts. Words with preceding /j/ lead the change. The change is reaching its end-point, with 

little change between the last two generations. Before /l/, /u/-fronting appears largely 

blocked, though there is some fronting in this context as well. We also found a frequency 

effect in /u/-fronting, with frequent words in the lead, though this effect is weaker than 

contextual effects and only present for older speakers. Variable words with deleted /j/ show 

more fronting than similar words that are never realised with /j/. This effect is also relatively 

weak. We predicted less fronting in variable words that retain /j/ compared to words that are 

always realised with /j/, but this prediction was not supported. Finally, /j/-dropping appears to 

be receding in low-frequency words, with no consistent changes among high-frequency 

words. 

 We now turn to P1. Looking at Figure 2, different contexts appear to change in 

parallel, supporting the notion of phoneme-level binding forces. A comparison between 

figures 2 and 3 also reveals that the pre-/l/ context breaks away from its original category, 

showing that contextual variants can indeed have some degree of independence. This, in 

itself, does not challenge modular approaches: it could easily be accommodated using 

separate phonetic implementation rules for the two contexts that change independently. 

However, the presence of fronting indicates that the pre-/l/ context has not yet fully separated 

from /u/, while the slower rate of change suggests that these tokens are less strongly bound to 

/u/ than tokens elsewhere. A possible interpretation of this effect is that category membership 

is gradient, with some contexts more strongly associated with a phoneme than others. This 

interpretation is easily accommodated by usage-based models that assume ‘fuzzy’ 

representations (e.g. Bybee, 2001; Scobbie & Stuart-Smith, 2008). It is also compatible with 
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modular approaches, insofar as it does not bear on the issue of phonetic detail in lexical 

representations. However, the idea of gradient category membership would require a 

substantial reappraisal of the traditional generative view of categories.  

The frequency effect for /u/-fronting supports P2: high-frequency words lead, and the 

size of the effect decreases over time. It is unclear whether this provides evidence for 

phonetically-detailed lexical representations. The observed decrease could also arise due to a 

ceiling effect: there is a high degree of overall fronting in the middle and younger groups, 

which leaves little scope for further fronting. Therefore, a simple online effect that applies to 

high-frequency words (e.g. vowel undershoot, which can lead to fronting for back vowels) 

could also, in principle, produce similar results. 

P3 is partly supported: variable words without /j/ show more fronting than expected 

based on phonetic context alone, but variable words with /j/ do not show the expected 

reduction in fronting compared to words that always have /j/. Nonetheless, the net effect of 

these patterns is that tokens of /u/ in variable words with versus without /j/ are not as far apart 

as they should be based on the phonetic context. This is precisely what we expect if we 

assume that phonetic details can be part of lexical representations (section 1.2.1). We make 

two reservations about these findings. First, we did not find evidence that this pattern changes 

over time, which would provide a stronger argument against strictly modular approaches. 

Second, the intermediate degree of fronting in N[∅]EW words could potentially result from 

coding errors: if some tokens with /j/ are accidentally coded without one, they may artificially 

inflate the average F2 of the group. A similar effect could also arise from discretising a 

gradient process of /j/-dropping: some tokens with weakened /j/ would likely be coded as 

N[∅]EW, and have the same biasing the influence on F2. However, both of these biases would 

be expected to have a larger influence on the initial portion of the trajectory, where 

miscoded/weakened /j/ tokens would be located. This is not what we found: the differences 
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are observed in the latter part of the trajectory; the initial portions are essentially identical for 

N[∅]EW and NOODLE, which suggests that the results are not due to coding errors. 

 The observed frequency effect on /j/-dropping goes against Phillips’ (2006) 

markedness-based prediction (P4a), but is compatible with Bybee’s (2000) proposal based on 

dialect levelling (P4b). It is plausible that variants with /j/ come from the standard variety, 

and first appear in low-frequency items with weaker lexical representations. We also 

observed an interaction between age and frequency. If /j/-dropping is gradient, this would 

support the idea that lexical representations can contain phonetic detail. If, however, /j/-

dropping is categorical, modular approaches can also account for these results. Our data set 

does not allow us to distinguish between these two different scenarios.  

In sum, our results include both lexical and more abstract categorical effects. Lexical 

effects were generally smaller than contextual ones (cf. Labov, 2010), but surfaced in several 

different aspects of /u/-fronting and /j/-dropping. These results do not support models that 

derive all aspects of sound change from a single level of cognitive representation. Instead, 

they call for models that treat phonemes, contextual variants and words as intersecting levels 

of phonetically detailed representation, each of which contribute to phonetic realisation (cf. 

Pierrehumbert, 2002, 2016). These results are not well accommodated by strictly modular 

feedforward models where the late stages of word production (where phonetic detail is added 

to an abstract categorical representation) can no longer refer to lexical information. 

On a broader level, these findings also illustrate how observations about language 

change can inform us about the cognitive capabilities underlying language, and conversely, 

how cognitive factors constrain the space of potential changes. They attest to the fact that 

there is no such thing as a ‘non-cognitive’ approach to change, as language – and, by 

extension, language change – is inextricably bound up with cognition. 
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