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Abstract 
In forensic voice comparison, there is increasing focus on the 
integration of automatic and phonetic methods to improve the 
validity and reliability of voice evidence to the courts. In line 
with this, we present a comparison of long-term measures of the 
speech signal to assess the extent to which they capture 
complementary speaker-specific information. Likelihood ratio-
based testing was conducted using MFCCs and (linear and Mel-
weighted) long-term formant distributions (LTFDs). Fusing 
automatic and semi-automatic systems yielded limited 
improvement in performance over the baseline MFCC system, 
indicating that these measures capture essentially the same 
speaker-specific information. The output from the best 
performing system was used to evaluate the contribution of 
auditory-based analysis of supralaryngeal (filter) and laryngeal 
(source) voice quality in system testing. Results suggest that the 
problematic speakers for the (semi-)automatic system are, to 
some extent, predictable from their supralaryngeal voice quality 
profiles, with the least distinctive speakers producing the 
weakest evidence and most misclassifications. However, the 
misclassified pairs were still easily differentiated via auditory 
analysis. Laryngeal voice quality may thus be useful in 
resolving problematic pairs for (semi-)automatic systems, 
potentially improving their overall performance. 

Index Terms: forensic voice comparison, MFCCs, LTFDs, 
auditory analysis, voice quality, system validity 

1.� Introduction 

1.1.� Forensic voice comparison 

Forensic voice comparison (FVC) involves the analysis of the 
speech patterns of an unknown offender (e.g. covert recordings 
of drugs deals) and those of a known suspect (e.g. a police 
interview). The expert’s role is to evaluate the strength of the 
voice evidence under the competing propositions of the 
prosecution (‘the suspect and offender are the same person’) 
and the defence (‘the suspect and offender are different 
people’). The decision on guilt lies with the trier of fact.  

Different approaches to FVC are used by experts, which can 
broadly be divided into automatic, semi-automatic, and 
phonetic methods. Automatic and phonetic approaches have 
largely developed in isolation from each other [1,2,3]. They 
differ primarily in terms of the features analysed and their 
conceptual treatment of the speech signal. Automatic methods 
typically treat the signal holistically, extracting and modelling 
spectral features to generate a probabilistic outcome, based on 

long-term resonance properties of the vocal tract. Phonetic 
analysis is grounded in a componential approach which 
decomposes the signal into linguistically relevant units, such as 
vowel and consonant phonemes, and applies standard acoustic 
and auditory methods to capture their properties. These 
analyses are combined to generate an overall conclusion. Semi-
automatic methods represent a hybrid of these approaches. 

1.2.� Current practice 

Around the world, FVC casework is predominantly conducted 
using only phonetic analysis [4,5], for various reasons. First, 
while the performance of automatic speaker recognition (ASR) 
systems has improved considerably (with error rates for state-
of-the-art systems less than 1% under certain conditions), much 
of the research in ASR has not considered the complexities of 
FVC casework [6]. Secondly, there is a longer history of courts 
admitting phonetic evidence. In England and Wales and in 
Northern Ireland this is enshrined in legal precedent (R v Robb 
1991; R v O’Docherty 2002; R v Flynn & St John 2008). 

There are also more fundamental issues with the use and 
acceptance of ASR systems in FVC casework. ASR systems are 
often perceived as being ‘black boxes’ (i.e. the internal 
mechanisms and algorithms are opaque, either due to lack of 
accessibility and/or lack of understanding) both by experts 
outside of speech technology and particularly by lawyers and 
the courts. This is primarily because the short-window spectral 
features extracted by ASR systems are “difficult to directly 
relate (to) the physiological traits of an individual” [7]. This 
makes the findings difficult to explain, in contrast to phonetic 
features which can be described to the court in non-technical 
terms, and demonstrated by the expert or by playing samples. 
The uncertainty about ASR systems is reflected in the Court of 
Appeal ruling in R v Slade & Ors [2015] which essentially 
rejected ASR-based evidence. There were various issues with 
the ASR evidence, including whether it constituted new 
evidence over and above that provided by the phonetic analysis 
at the original trial. The court also displayed fundamental 
misunderstandings about how ASR systems work, further 
propagating the ‘black box’ myth. The ruling is binding on 
lower courts and will set back the use of ASR systems in 
casework by some years in the UK. 

1.3.� Integration of phonetic and automatic methods 

As noted, the performance of ASR systems is extremely good, 
and their potential value in the forensic context is clear. As 
such, the use of ASR in casework is increasing, with Germany 
and Sweden now admitting ASR evidence in combination with 
phonetic analysis. Given these developments there has been 
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increasing focus on the integration of the best elements of the 
different methods to improve FVC evidence [8,9]. Fundamental 
to this development is an understanding of the methods’ 
strengths and weaknesses. This involves examining how 
different methods capture speaker-specific information, the 
relationships between methods, the underlying source of any 
difference in the speaker-specific information captured, and the 
extent to which the combination of approaches might improve 
the overall performance of FVC systems.  

However, few studies have attempted to address such issues 
([10,11] are exceptions). Notably, [12] evaluated the falsely 
accepted pairs (different-speaker classified as the same speaker) 
by an i-vector ASR system using auditory and acoustic phonetic 
analyses. Although the differences between pairs resulted from 
a range of features, voice quality (VQ) was considered of 
“fundamental importance” for distinguishing voices. However, 
while the phonetic analysis highlighted the ‘back-end’ value of 
VQ in separating speakers, it did not address how this 
information might be useful for front-end prediction of 
problematic speakers for the automatic system [11]. 

1.4.� This study 

This study evaluates the complementarity of the speaker-
specific information captured by long-term automatic 
(MFCCs), semi-automatic (LTFDs), and phonetic measures 
(VQ). These features were selected because they are commonly 
used in each of the three main approaches, encode considerable 
speaker-specific information, and model long-term vocal 
output. In this sense, the analyses are directly comparable. 

1.4.1.� Features 

Mel frequency cepstral coefficients (MFCCs; automatic) are 
used extensively in automatic systems. They are a rich 
representation of the Mel-weighted power spectrum capturing 
information about the supralaryngeal vocal tract by, in 
principle, decoupling it from laryngeal information. MFCC-
based systems are often used as a baseline against which to 
assess the potential value of additional features [10,11].  

Long term formant distributions (LTFDs; semi-automatic 
features) model vowel formant values extracted across an entire 
speech sample. The analysis requires information about vowel 
boundaries, but is not segmental in that all vowels are modelled 
together. LTFDs capture information about the maximal extents 
of the acoustic vowel space and, by inference, the geometry of 
the supralaryngeal vocal tract. The use of vowel formants is 
ubiquitous in FVC casework [1,13]. LTFDs have also received 
some attention in FVC [14,15] and have been shown to provide 
useful speaker-specific information. However, only a limited 
amount of previous work has examined the complementarity of 
LTFDs and MFCCs using empirical system testing [16]. We 
also examined Mel-weighted LTFDs ((M)LTFDs), as they are 
predicted to be more closely correlated with MFCCs.  

Voice quality (VQ; phonetic features) refers to long term, 
quasi-permanent vocal ‘settings’ [17], also referred to as 
‘timbre’. VQ is defined separately in terms of supralaryngeal 
settings (e.g. nasality, back/front tongue orientation) and 
laryngeal settings (e.g. creaky phonation). Most experts 
examine VQ regularly in casework [4] with some using a 
recognised framework such as the Vocal Profile Analysis 
(VPA) scheme [18]. Those surveyed in [4] also considered VQ 
the most useful phonetic speaker discriminant in FVC cases 
(more than segmental features; e.g. vowel formants). For the 
present study, we analysed VQ using a version of the VPA 

modified for FVC [19] with 25 supralaryngeal and 7 laryngeal 
dimensions. For each feature, there are four possible scalar 
points, with 0 representing ‘neutral’ and 1-3 representing 
increasing degrees of ‘non-neutral’ features (labelled ‘slight’, 
‘marked’, or ‘extreme’). 

1.4.2.� Analysis and hypotheses 

Likelihood ratio-based (LR) system testing was conducted 
using the automatic and semi-automatic features. These 
features were also combined (using score-level fusion) to assess 
the potential improvement in automatic system performance 
with the addition of semi-automatic features. Following [12], 
the best performing system was used to identify falsely 
classified pairs which were then analysed systematically in 
terms of VQ. The typicality of features was assessed relative to 
a larger set of VQ profiles for a representative population 
sample. As measures of long-term vocal tract (filter) output, the 
MFCCs, LTFDs, and supralaryngeal VQ features should, in 
principle, capture similar speaker-specific information. 
However, the link between the acoustic features and the VQ 
features is likely to be weakened by the fact that VQ is 
processed via the human auditory system. Given the 
fundamental principles of source-filter theory, the laryngeal VQ 
features are predicted to encode complementary speaker-
specific information to the vocal tract output measures. 

2.� Method 

2.1.�Materials 

Recordings were taken from the DyViS corpus (100 men, aged 
18-25, Standard Southern British English) [20]. It was collected 
for forensic phonetic research and contains multiple tasks 
relating to a mock crime. We used high-quality recordings from 
Tasks 1 and 2 (44.1 kHz, 16-bit, 9-30 min. duration). Task 1 
was a mock police interview. Task 2 was a spontaneous near-
end, telephone conversation about the crime between the 
participant and an ‘accomplice’. Samples were recorded on the 
same day, but with some time separation between sessions. 

2.2.� Pre-processing 

The audio files were edited to remove overlapping speech, 
background noise, and long silences. The edited intervals were 
concatenated, the audio resampled at 10 kHz, and time stamps 
for utterance boundaries extracted. A Praat script automatically 
identified sections containing signal overload (‘clipping’). 
Voice activity detection was performed in MATLAB using the 
vadsohn function from the VOICEBOX toolbox [21]. Silence was 
defined as a series of adjacent non-speech frames over 100ms 
[22]. The output of the VAD analysis was also checked 
manually for a subset of the recordings to confirm that the 
default threshold was able to categorise voice and non-voice. 
Finally, the edited audio was segmented into consonants (C) 
and vowels (V) using StkCV [23], and time stamps for the onset 
and offset of strings of V intervals were extracted. 

2.3.�MFCC and LTFD extraction 

The edited audio files were divided into 20ms frames shifted at 
10ms intervals (i.e. with 50% overlap between frames) using a 
Hamming window. From each frame, time-aligned MFCC, 
LTFD, and (M)LTFD feature vectors were extracted. The 
MFCC feature vector consisted of 12 mean- and variance-
normalised MFCCs, 12 delta (Δ) coefficients, and 12 delta-delta 
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(ΔΔ) coefficients. Cepstral analysis was performed using the 
rastamat toolbox [24] in MATLAB. The LTFD feature vector 
consisted of F1 to F4 frequencies, bandwidths (BWs), and Δs 
extracted using the Snack Sound toolkit [25]. LTFD frequencies 
and BWs were Mel-weighted to generate the (M)LTFD feature 
vector, to which Δs were appended. 

2.4.� Voice quality analysis  

The edited recordings for Task 2 were analysed by authors PFo, 
PFr, and ESS independently the version of the VPA described 
in [19]. A cross-coder calibration process produced agreed 
profiles for each speaker. A subset of profiles, identified as 
those speakers falsely classified by the best performing 
automatic system (see 3.4), was then analysed by ESS for Task 
1. Data for all 100 speakers were used to assess the typicality of 
VPA features. 

2.5.� Post-processing  

Feature vectors within three frames of utterance boundaries 
were removed, as well as frames with clipping or silence [26]. 
From the remaining frames, those within sections defined as 
vowels by the StkCV script were extracted for analysis. 
Samples were then reduced to 60 secs of net speech (6000 
frames). Speakers with fewer than 60 secs were removed, 
leaving 94 speakers. 

2.6.� System testing and evaluation  

The speaker-discriminatory value of MFCCs, LTFDs, and 
(M)LTFDs was examined using likelihood ratio (LR)-based 
testing [27,28]. The 94 speakers were randomly divided in sets 
of training (31 speakers), test (31), and reference data (32). 
Although the number of speakers is relatively small compared 
to large-scale testing of automatic systems, such samples are 
common in FVC research [29]. Same- (SS) and different-
speaker (DS) scores were computed for the training and test 
data using the GMM-UBM approach [30] implemented using 
the MSR toolbox [31]. The reference data were used to create a 
UBM against which to assess typicality. Suspect GMMs were 
created using maximum a posteriori (MAP) adaptation in which 
the means, variances, and weights of the UBM were adapted 
towards the suspect data. Separate sets of scores were computed 
for each form of input data. Based on pre-testing, GMMs for 
the LTFDs and (M)LTFDs used 32 Gaussians, while the MFCC 
GMMs used 1024 Gaussians.  

The scores for the training data were used to train logistic 
regression models [32], and the coefficients applied to the 
scores for the test data to generate calibrated log10 LRs (LLRs) 
for each system. The same approach was used to fuse each of 
the LTFD and (M)LTFD systems with each of the MFCC 
systems, but with coefficients derived from multivariate logistic 
regression models (i.e. score-level fusion). In total, parallel sets 
of 31 SS and 465 independent DS LLRs were produced for 11 
individual systems (4 LTFD, 4 (M)LTFD, and 3 MFCC) and 24 
fused systems (4 LTFD x 3 MFCC, and 4 (M)LTFD x 3 
MFCC). System performance (validity) was evaluated using 
equal error rate (EER) and the log LR cost function (Cllr) [33]. 

3.� Results 

3.1.�MFCC systems 

The worst performing automatic system used only MFCCs as 
input (6.45% EER, 0.267 Cllr). Consistent with [34], the 

addition of derivatives produced a marked improvement. The 
best performing MFCC system used both Δs and ΔΔs, 
producing an EER of 3.23% and a Cllr of 0.146.  

3.2.� LTFD and (M)LTFD systems 

The best performing LTFD system (shaded in Table 1) included 
BWs but not Δs (6.45% EER, 0.255 Cllr), although the 
improvement over the LTFD-only system was marginal. The 
(M)LTFD systems all performed considerably worse than the 
LTFD systems. The addition of BWs and Δs worsened 
performance, with the (M)LTFD-only system producing the 
best validity (shaded). All LTFD and (M)LTFD systems 
performed worse than the best performing MFCC system. 

Table 1: Validity (EER and Cllr) of each of the LTFD 
and (M)LTFD systems, best systems shaded.  

System  EER (%) Cllr 
LTFDs 6.67 0.284 
LTFDs+BWs 6.45 0.255 
LTFDs+ Δs 6.99 0.311 
LTFDs+BWs+Δs 6.67 0.259 
(M)LTFDs 8.29 0.290 
(M)LTFDs+BWs 9.68 0.462 
(M)LTFDs+Δs 9.57 0.325 
(M)LTFDs+BWs+Δs 9.68 0.507 

3.3.� Fused systems 

The fused systems were evaluated in terms of raw and 
percentage improvements in EER and Cllr over the associated 
baseline MFCC system (Figure 1). 

 

Figure 1: Distributions of raw EER (L) and Cllr (R) 
differences between the fused systems using 

(M)LTFDs and LTFDs and baseline MFCC system. 

Across all fused systems, the addition of LTFD and (M)LTFD 
information had relatively little effect on EER. For eight 
systems, the addition of formant information reduced EER by 
maximally 0.53% in terms of the raw value. For nine systems, 
the fused EER was identical to the MFCC system, while for 
seven systems the addition of formant information produced 
higher EERs. Fusion also had relatively little effect on Cllr. On 
average the difference between the fused and baseline systems 
was 0.02, equivalent to an 8.8% improvement in Cllr. For just 
four of the 24 fused systems the decrease in Cllr was more than 
0.01. For two systems, the addition of LTFDs worsened Cllr. For 
the (M)LTFD-fused systems, the average difference from the 
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baseline was just 0.006, equivalent to 2.4% improvement over 
the baseline, while half of the fused (M)LTFD systems 
produced higher Cllr than the baseline. Despite the limited effect 
of formant information, the best system overall was a fused 
system using MFCCs+Δs+ΔΔs and LTFDs.  

3.4.� Voice quality 

In this section, we evaluate the output of the best performing 
fused system in terms of speakers’ VQ profiles. The contrary-
to-fact LRs produced by this system (3.3) were analysed to 
evaluate the potential complementarity of VQ and (semi-
)automatic analyses. These errors consisted of one false 
rejection (SS comparison producing DS evidence) and 13 false 
acceptances (DS comparison producing SS evidence) – this is 
equivalent to the numbers of trials in [9] and [12]. In this study, 
supralaryngeal and laryngeal VQ features were evaluated 
separately, due to the underlying differences in what 
information they capture, in principle (see 1.4.2.). 

3.4.1.� Supralaryngeal features 

Of the 13 falsely accepted DS pairs, nine involved speakers 
#067 and #072. Both had unremarkable supralaryngeal VQ 
profiles relative to the group of 100 DyViS speakers and were 
non-neutral only for very common features: slight advanced 
tongue tip/blade (shared by 32% of speakers), slight fronted 
tongue body (67%), and slight nasality (63%). These features 
are so common as to be considered accent features for this 
population [18]. This indicates that speakers with highly typical 
supralaryngeal VQ profiles may be those that the automatic 
system has difficulty separating from other speakers. To test 
this more robustly, a Euclidean distance was calculated between 
each test speaker’s VQ profile and the average (mode) VQ 
profile for all speakers in the corpus. These distances were 
correlated with the mean LLRs across all DS comparisons 
involving each test speaker produced by the best fused system.    

A weak negative correlation (Pearon’s R = -0.283) was 
found between mean DS LLRs for each speaker and the 
typicality of their supralaryngeal VQ profile. That is, speakers 
with typical (common) supralaryngeal VPA profiles were, to a 
limited extent, more likely to produce weak LLRs or system 
errors. However, of the falsely accepted pairs there were also 
some which were very different, and thus easily separable, in 
terms of their supralaryngeal profiles. Speaker #066 was non-
neutral for lip spreading and close jaw, while speaker #037 was 
neutral for these features. These differences are marked given 
that these features were shared by just 5% and 1%, respectively, 
of the speakers in this data set. 

3.4.2.� Laryngeal features 

The misclassifications were easily resolved using laryngeal VQ 
information. In eight of the 13 false acceptances, differences of 
between two and three scalar degrees occurred for at least one 
laryngeal setting. Interestingly, in these cases one speaker was 
typically neutral and the other was non-neutral (i.e. the setting 
was absent vs. present). The falsely classified pairs were also 
given to two practicing forensic voice experts for blind analysis. 
Both experts correctly separated all of the misclassified pairs 
and commented that phonation was the primary feature that 
underpinned their judgements. 

4.� Discussion 
The results of LR-based testing revealed a number of important 

patterns for automatic and semi-automatic FVC. Firstly, linear 
LTFDs consistently outperformed Mel-weighted LTFDs. This 
may be due to the Mel scale’s lower resolution representation 
of higher frequencies compared with linear Hz values. Thus, the 
Mel weighting may fail to capture the considerable speaker-
specific information encoded in higher frequency formants. 
Secondly, when fused with MFCCs, the formant information 
provided little or no improvement over the baseline systems. 
This suggests that LTFDs do not provide independent speaker-
discriminatory information to MFCCs. 

Supralaryngeal VQ features appear to capture at least some 
of the information encoded by the MFCCs and LTFDs. The 
results in 3.4.1 provide some evidence that speakers with 
inherently unremarkable supralaryngeal VQ profiles are more 
likely to be the ones that produce weak LRs and errors. This 
relationship may be useful in making front-end predictions 
about which speakers will be problematic for automatic 
systems. This is also consistent with the predicted underlying 
relationship between supralaryngeal VQ features and MFCCs/ 
LTFDs (1.4.2). However, within the errors produced by the best 
performing automatic system, there were still pairs of speakers 
who were separable based on their supralaryngeal VPA 
profiles. The issue may then be one of resolution. That is, VPA 
may be a lower resolution representation of supralaryngeal 
vocal tract output than LTFDs or MFCCs. However, given the 
inherent differences in methodology for the extraction of the 
phonetic measures, it may be that the issue is one of weighting 
rather than resolution. It is likely that there are properties of the 
voice that are perceptually salient and in isolation may suffice 
for speaker separation, but which are not captured by holistic 
acoustic measures. Similarly, there may be features weighted 
very strongly for the acoustic measures that are less marked to 
the human auditory system.  

The laryngeal VQ profiles and blind auditory analysis 
revealed that, on this limited set of comparison, it is possible to 
resolve pairs misclassified by the automatic system using 
phonation features (as in [12]). This indicates that important, 
and indeed complementary, speaker-specific information is 
encoded in laryngeal features relative to both auditory and 
acoustic supralaryngeal vocal tract output. Thus, it may be 
possible to improve the performance of automatic systems by 
incorporating laryngeal information [35]. 

5.� Conclusions 
We investigated the complementarity of automatic, semi-
automatic, and phonetic measures of vocal output for FVC. 
Results showed strong relationships between MFCCs, LTFDs 
and (M)LTFDs in terms of the speaker-specific information 
they encode. Importantly, there appears to be some relationship 
between these measures and supralaryngeal VQ. This may 
allow us to better explain to the courts what information 
automatic systems capture and to identify potentially 
problematic cases. The apparent independence of laryngeal 
features suggests that this information might help improve 
automatic systems. 
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