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Abstract

In forensic voice comparison, there is increasing focus on the
integration of automatic and phonetic methods to improve the
validity and reliability of voice evidence to the courts. In line
with this, we present a comparison of long-term measures of the
speech signal to assess the extent to which they capture
complementary speaker-specific information. Likelihood ratio-
based testing was conducted using MFCCs and (linear and Mel-
weighted) long-term formant distributions (LTFDs). Fusing
automatic and semi-automatic systems yielded limited
improvement in performance over the baseline MFCC system,
indicating that these measures capture essentially the same
speaker-specific information. The output from the best
performing system was used to evaluate the contribution of
auditory-based analysis of supralaryngeal (filter) and laryngeal
(source) voice quality in system testing. Results suggest that the
problematic speakers for the (semi-)automatic system are, to
some extent, predictable from their supralaryngeal voice quality
profiles, with the least distinctive speakers producing the
weakest evidence and most misclassifications. However, the
misclassified pairs were still easily differentiated via auditory
analysis. Laryngeal voice quality may thus be useful in
resolving problematic pairs for (semi-)automatic systems,
potentially improving their overall performance.

Index Terms: forensic voice comparison, MFCCs, LTFDs,
auditory analysis, voice quality, system validity

1. Introduction

1.1. Forensic voice comparison

Forensic voice comparison (FVC) involves the analysis of the
speech patterns of an unknown offender (e.g. covert recordings
of drugs deals) and those of a known suspect (e.g. a police
interview). The expert’s role is to evaluate the strength of the
voice evidence under the competing propositions of the
prosecution (‘the suspect and offender are the same person’)
and the defence (‘the suspect and offender are different
people’). The decision on guilt lies with the trier of fact.

Different approaches to FVC are used by experts, which can
broadly be divided into automatic, semi-automatic, and
phonetic methods. Automatic and phonetic approaches have
largely developed in isolation from each other [1,2,3]. They
differ primarily in terms of the features analysed and their
conceptual treatment of the speech signal. Automatic methods
typically treat the signal holistically, extracting and modelling
spectral features to generate a probabilistic outcome, based on
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long-term resonance properties of the vocal tract. Phonetic
analysis is grounded in a componential approach which
decomposes the signal into linguistically relevant units, such as
vowel and consonant phonemes, and applies standard acoustic
and auditory methods to capture their properties. These
analyses are combined to generate an overall conclusion. Semi-
automatic methods represent a hybrid of these approaches.

1.2. Current practice

Around the world, FVC casework is predominantly conducted
using only phonetic analysis [4,5], for various reasons. First,
while the performance of automatic speaker recognition (ASR)
systems has improved considerably (with error rates for state-
of-the-art systems less than 1% under certain conditions), much
of the research in ASR has not considered the complexities of
FVC casework [6]. Secondly, there is a longer history of courts
admitting phonetic evidence. In England and Wales and in
Northern Ireland this is enshrined in legal precedent (R v Robb
1991; R v O’Docherty 2002; R v Flynn & St John 2008).

There are also more fundamental issues with the use and
acceptance of ASR systems in FVC casework. ASR systems are
often perceived as being ‘black boxes’ (i.e. the internal
mechanisms and algorithms are opaque, either due to lack of
accessibility and/or lack of understanding) both by experts
outside of speech technology and particularly by lawyers and
the courts. This is primarily because the short-window spectral
features extracted by ASR systems are “difficult to directly
relate (to) the physiological traits of an individual” [7]. This
makes the findings difficult to explain, in contrast to phonetic
features which can be described to the court in non-technical
terms, and demonstrated by the expert or by playing samples.
The uncertainty about ASR systems is reflected in the Court of
Appeal ruling in R v Slade & Ors [2015] which essentially
rejected ASR-based evidence. There were various issues with
the ASR evidence, including whether it constituted new
evidence over and above that provided by the phonetic analysis
at the original trial. The court also displayed fundamental
misunderstandings about how ASR systems work, further
propagating the ‘black box’ myth. The ruling is binding on
lower courts and will set back the use of ASR systems in
casework by some years in the UK.

1.3. Integration of phonetic and automatic methods

As noted, the performance of ASR systems is extremely good,
and their potential value in the forensic context is clear. As
such, the use of ASR in casework is increasing, with Germany
and Sweden now admitting ASR evidence in combination with
phonetic analysis. Given these developments there has been
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increasing focus on the integration of the best elements of the
different methods to improve FVC evidence [8,9]. Fundamental
to this development is an understanding of the methods’
strengths and weaknesses. This involves examining how
different methods capture speaker-specific information, the
relationships between methods, the underlying source of any
difference in the speaker-specific information captured, and the
extent to which the combination of approaches might improve
the overall performance of FVC systems.

However, few studies have attempted to address such issues
([10,11] are exceptions). Notably, [12] evaluated the falsely
accepted pairs (different-speaker classified as the same speaker)
by an i-vector ASR system using auditory and acoustic phonetic
analyses. Although the differences between pairs resulted from
a range of features, voice quality (VQ) was considered of
“fundamental importance” for distinguishing voices. However,
while the phonetic analysis highlighted the ‘back-end’ value of
VQ in separating speakers, it did not address how this
information might be useful for front-end prediction of
problematic speakers for the automatic system [11].

1.4. This study

This study evaluates the complementarity of the speaker-
specific information captured by long-term automatic
(MFCCs), semi-automatic (LTFDs), and phonetic measures
(VQ). These features were selected because they are commonly
used in each of the three main approaches, encode considerable
speaker-specific information, and model long-term vocal
output. In this sense, the analyses are directly comparable.

1.4.1. Features

Mel frequency cepstral coefficients (MFCCs; automatic) are
used extensively in automatic systems. They are a rich
representation of the Mel-weighted power spectrum capturing
information about the supralaryngeal vocal tract by, in
principle, decoupling it from laryngeal information. MFCC-
based systems are often used as a baseline against which to
assess the potential value of additional features [10,11].

Long term formant distributions (LTFDs; semi-automatic
features) model vowel formant values extracted across an entire
speech sample. The analysis requires information about vowel
boundaries, but is not segmental in that all vowels are modelled
together. LTFDs capture information about the maximal extents
of the acoustic vowel space and, by inference, the geometry of
the supralaryngeal vocal tract. The use of vowel formants is
ubiquitous in FVC casework [1,13]. LTFDs have also received
some attention in FVC [14,15] and have been shown to provide
useful speaker-specific information. However, only a limited
amount of previous work has examined the complementarity of
LTFDs and MFCCs using empirical system testing [16]. We
also examined Mel-weighted LTFDs (M)LTFDs), as they are
predicted to be more closely correlated with MFCCs.

Voice quality (VQ; phonetic features) refers to long term,
quasi-permanent vocal ‘settings’ [17], also referred to as
‘timbre’. VQ is defined separately in terms of supralaryngeal
settings (e.g. nasality, back/front tongue orientation) and
laryngeal settings (e.g. creaky phonation). Most experts
examine VQ regularly in casework [4] with some using a
recognised framework such as the Vocal Profile Analysis
(VPA) scheme [18]. Those surveyed in [4] also considered VQ
the most useful phonetic speaker discriminant in FVC cases
(more than segmental features; e.g. vowel formants). For the
present study, we analysed VQ using a version of the VPA
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modified for FVC [19] with 25 supralaryngeal and 7 laryngeal
dimensions. For each feature, there are four possible scalar
points, with O representing ‘neutral’ and 1-3 representing
increasing degrees of ‘non-neutral’ features (labelled ‘slight’,
‘marked’, or ‘extreme’).

1.4.2.  Analysis and hypotheses

Likelihood ratio-based (LR) system testing was conducted
using the automatic and semi-automatic features. These
features were also combined (using score-level fusion) to assess
the potential improvement in automatic system performance
with the addition of semi-automatic features. Following [12],
the best performing system was used to identify falsely
classified pairs which were then analysed systematically in
terms of VQ. The typicality of features was assessed relative to
a larger set of VQ profiles for a representative population
sample. As measures of long-term vocal tract (filter) output, the
MFCCs, LTFDs, and supralaryngeal VQ features should, in
principle, capture similar speaker-specific information.
However, the link between the acoustic features and the VQ
features is likely to be weakened by the fact that VQ is
processed via the human auditory system. Given the
fundamental principles of source-filter theory, the laryngeal VQ
features are predicted to encode complementary speaker-
specific information to the vocal tract output measures.

2. Method

2.1. Materials

Recordings were taken from the DyViS corpus (100 men, aged
18-25, Standard Southern British English) [20]. It was collected
for forensic phonetic research and contains multiple tasks
relating to a mock crime. We used high-quality recordings from
Tasks 1 and 2 (44.1 kHz, 16-bit, 9-30 min. duration). Task 1
was a mock police interview. Task 2 was a spontaneous near-
end, telephone conversation about the crime between the
participant and an ‘accomplice’. Samples were recorded on the
same day, but with some time separation between sessions.

2.2. Pre-processing

The audio files were edited to remove overlapping speech,
background noise, and long silences. The edited intervals were
concatenated, the audio resampled at 10 kHz, and time stamps
for utterance boundaries extracted. A Praat script automatically
identified sections containing signal overload (‘clipping’).
Voice activity detection was performed in MATLAB using the
vadsohn function from the VOICEBOX toolbox [21]. Silence was
defined as a series of adjacent non-speech frames over 100ms
[22]. The output of the VAD analysis was also checked
manually for a subset of the recordings to confirm that the
default threshold was able to categorise voice and non-voice.
Finally, the edited audio was segmented into consonants (C)
and vowels (V) using StkCV [23], and time stamps for the onset
and offset of strings of V intervals were extracted.

2.3. MFCC and LTFD extraction

The edited audio files were divided into 20ms frames shifted at
10ms intervals (i.e. with 50% overlap between frames) using a
Hamming window. From each frame, time-aligned MFCC,
LTFD, and (M)LTFD feature vectors were extracted. The
MEFCC feature vector consisted of 12 mean- and variance-
normalised MFCCs, 12 delta (A) coefficients, and 12 delta-delta



(AA) coefficients. Cepstral analysis was performed using the
rastamat toolbox [24] in MATLAB. The LTFD feature vector
consisted of F1 to F4 frequencies, bandwidths (BWs), and As
extracted using the Snack Sound toolkit [25]. LTFD frequencies
and BWs were Mel-weighted to generate the (M)LTFD feature
vector, to which As were appended.

2.4. Voice quality analysis

The edited recordings for Task 2 were analysed by authors PFo,
PFr, and ESS independently the version of the VPA described
in [19]. A cross-coder calibration process produced agreed
profiles for each speaker. A subset of profiles, identified as
those speakers falsely classified by the best performing
automatic system (see 3.4), was then analysed by ESS for Task
1. Data for all 100 speakers were used to assess the typicality of
VPA features.

2.5. Post-processing

Feature vectors within three frames of utterance boundaries
were removed, as well as frames with clipping or silence [26].
From the remaining frames, those within sections defined as
vowels by the StkCV script were extracted for analysis.
Samples were then reduced to 60 secs of net speech (6000
frames). Speakers with fewer than 60 secs were removed,
leaving 94 speakers.

2.6. System testing and evaluation

The speaker-discriminatory value of MFCCs, LTFDs, and
(M)LTFDs was examined using likelihood ratio (LR)-based
testing [27,28]. The 94 speakers were randomly divided in sets
of training (31 speakers), test (31), and reference data (32).
Although the number of speakers is relatively small compared
to large-scale testing of automatic systems, such samples are
common in FVC research [29]. Same- (SS) and different-
speaker (DS) scores were computed for the training and test
data using the GMM-UBM approach [30] implemented using
the MSR toolbox [31]. The reference data were used to create a
UBM against which to assess typicality. Suspect GMMs were
created using maximum a posteriori (MAP) adaptation in which
the means, variances, and weights of the UBM were adapted
towards the suspect data. Separate sets of scores were computed
for each form of input data. Based on pre-testing, GMMs for
the LTFDs and (M)LTFDs used 32 Gaussians, while the MFCC
GMMs used 1024 Gaussians.

The scores for the training data were used to train logistic
regression models [32], and the coefficients applied to the
scores for the test data to generate calibrated log;, LRs (LLRs)
for each system. The same approach was used to fuse each of
the LTFD and (M)LTFD systems with each of the MFCC
systems, but with coefficients derived from multivariate logistic
regression models (i.e. score-level fusion). In total, parallel sets
of 31 SS and 465 independent DS LLRs were produced for 11
individual systems (4 LTFD, 4 (M)LTFD, and 3 MFCC) and 24
fused systems (4 LTFD x 3 MFCC, and 4 (M)LTFD x 3
MEFCC). System performance (validity) was evaluated using
equal error rate (EER) and the log LR cost function (Cyy,) [33].

3. Results

3.1. MFCC systems

The worst performing automatic system used only MFCCs as
input (6.45% EER, 0.267 Cy,). Consistent with [34], the
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addition of derivatives produced a marked improvement. The
best performing MFCC system used both As and AAs,
producing an EER of 3.23% and a C;, of 0.146.

3.2. LTFD and (M)LTFD systems

The best performing LTFD system (shaded in Table 1) included
BWs but not As (6.45% EER, 0.255 Cy,), although the
improvement over the LTFD-only system was marginal. The
(M)LTFD systems all performed considerably worse than the
LTFD systems. The addition of BWs and As worsened
performance, with the (M)LTFD-only system producing the
best validity (shaded). All LTFD and (M)LTFD systems
performed worse than the best performing MFCC system.

Table 1: Validity (EER and Cy,) of each of the LTFD
and (M)LTFD systems, best systems shaded.

System EER (%) Cue
LTFDs 6.67 0.284
LTFDs+BWs 6.45 0.255
LTFDs+ As 6.99 0311
LTFDs+BWs+As 6.67 0.259
(M)LTFDs 8.29 0.290
(M)LTFDs+BWs 9.68 0.462
(M)LTFDs+As 9.57 0.325
(M)LTFDs+BWs+As 9.68 0.507

3.3. Fused systems

The fused systems were evaluated in terms of raw and
percentage improvements in EER and Cy;, over the associated
baseline MFCC system (Figure 1).
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Figure 1: Distributions of raw EER (L) and Cy, (R)
differences between the fused systems using
(M)LTFDs and LTFDs and baseline MFCC system.

Across all fused systems, the addition of LTFD and (M)LTFD
information had relatively little effect on EER. For eight
systems, the addition of formant information reduced EER by
maximally 0.53% in terms of the raw value. For nine systems,
the fused EER was identical to the MFCC system, while for
seven systems the addition of formant information produced
higher EERs. Fusion also had relatively little effect on Cy;,.. On
average the difference between the fused and baseline systems
was 0.02, equivalent to an 8.8% improvement in Cy,. For just
four of the 24 fused systems the decrease in Cy;, was more than
0.01. For two systems, the addition of LTFDs worsened Cy,. For
the (M)LTFD-fused systems, the average difference from the



baseline was just 0.006, equivalent to 2.4% improvement over
the baseline, while half of the fused (M)LTFD systems
produced higher Cy, than the baseline. Despite the limited effect
of formant information, the best system overall was a fused
system using MFCCs+As+AAs and LTFDs.

3.4. Voice quality

In this section, we evaluate the output of the best performing
fused system in terms of speakers’ VQ profiles. The contrary-
to-fact LRs produced by this system (3.3) were analysed to
evaluate the potential complementarity of VQ and (semi-
)automatic analyses. These errors consisted of one false
rejection (SS comparison producing DS evidence) and 13 false
acceptances (DS comparison producing SS evidence) — this is
equivalent to the numbers of trials in [9] and [12]. In this study,
supralaryngeal and laryngeal VQ features were evaluated
separately, due to the underlying differences in what
information they capture, in principle (see 1.4.2.).

3.4.1.  Supralaryngeal features

Of the 13 falsely accepted DS pairs, nine involved speakers
#067 and #072. Both had unremarkable supralaryngeal VQ
profiles relative to the group of 100 DyViS speakers and were
non-neutral only for very common features: slight advanced
tongue tip/blade (shared by 32% of speakers), slight fronted
tongue body (67%), and slight nasality (63%). These features
are so common as to be considered accent features for this
population [18]. This indicates that speakers with highly typical
supralaryngeal VQ profiles may be those that the automatic
system has difficulty separating from other speakers. To test
this more robustly, a Euclidean distance was calculated between
each test speaker’s VQ profile and the average (mode) VQ
profile for all speakers in the corpus. These distances were
correlated with the mean LLRs across all DS comparisons
involving each test speaker produced by the best fused system.

A weak negative correlation (Pearon’s R = -0.283) was
found between mean DS LLRs for each speaker and the
typicality of their supralaryngeal VQ profile. That is, speakers
with typical (common) supralaryngeal VPA profiles were, to a
limited extent, more likely to produce weak LLRs or system
errors. However, of the falsely accepted pairs there were also
some which were very different, and thus easily separable, in
terms of their supralaryngeal profiles. Speaker #066 was non-
neutral for lip spreading and close jaw, while speaker #037 was
neutral for these features. These differences are marked given
that these features were shared by just 5% and 1%, respectively,
of the speakers in this data set.

3.4.2. Laryngeal features

The misclassifications were easily resolved using laryngeal VQ
information. In eight of the 13 false acceptances, differences of
between two and three scalar degrees occurred for at least one
laryngeal setting. Interestingly, in these cases one speaker was
typically neutral and the other was non-neutral (i.e. the setting
was absent vs. present). The falsely classified pairs were also
given to two practicing forensic voice experts for blind analysis.
Both experts correctly separated all of the misclassified pairs
and commented that phonation was the primary feature that
underpinned their judgements.

4. Discussion

The results of LR-based testing revealed a number of important
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patterns for automatic and semi-automatic FVC. Firstly, linear
LTFDs consistently outperformed Mel-weighted LTFDs. This
may be due to the Mel scale’s lower resolution representation
of higher frequencies compared with linear Hz values. Thus, the
Mel weighting may fail to capture the considerable speaker-
specific information encoded in higher frequency formants.
Secondly, when fused with MFCCs, the formant information
provided little or no improvement over the baseline systems.
This suggests that LTFDs do not provide independent speaker-
discriminatory information to MFCCs.

Supralaryngeal VQ features appear to capture at least some
of the information encoded by the MFCCs and LTFDs. The
results in 3.4.1 provide some evidence that speakers with
inherently unremarkable supralaryngeal VQ profiles are more
likely to be the ones that produce weak LRs and errors. This
relationship may be useful in making front-end predictions
about which speakers will be problematic for automatic
systems. This is also consistent with the predicted underlying
relationship between supralaryngeal VQ features and MFCCs/
LTFDs (1.4.2). However, within the errors produced by the best
performing automatic system, there were still pairs of speakers
who were separable based on their supralaryngeal VPA
profiles. The issue may then be one of resolution. That is, VPA
may be a lower resolution representation of supralaryngeal
vocal tract output than LTFDs or MFCCs. However, given the
inherent differences in methodology for the extraction of the
phonetic measures, it may be that the issue is one of weighting
rather than resolution. It is likely that there are properties of the
voice that are perceptually salient and in isolation may suffice
for speaker separation, but which are not captured by holistic
acoustic measures. Similarly, there may be features weighted
very strongly for the acoustic measures that are less marked to
the human auditory system.

The laryngeal VQ profiles and blind auditory analysis
revealed that, on this limited set of comparison, it is possible to
resolve pairs misclassified by the automatic system using
phonation features (as in [12]). This indicates that important,
and indeed complementary, speaker-specific information is
encoded in laryngeal features relative to both auditory and
acoustic supralaryngeal vocal tract output. Thus, it may be
possible to improve the performance of automatic systems by
incorporating laryngeal information [35].

5. Conclusions

We investigated the complementarity of automatic, semi-
automatic, and phonetic measures of vocal output for FVC.
Results showed strong relationships between MFCCs, LTFDs
and (M)LTFDs in terms of the speaker-specific information
they encode. Importantly, there appears to be some relationship
between these measures and supralaryngeal VQ. This may
allow us to better explain to the courts what information
automatic systems capture and to identify potentially
problematic cases. The apparent independence of laryngeal
features suggests that this information might help improve
automatic systems.
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