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Research into the forensic performance of individual formants has offered considerable evidence to support the traditional acoustic-phonetic
view that whilst F1 and F2 encode broad phonetic contrast, higher formants may offer greater speaker-discriminatory potential (Peterson 1959,
Ladefoged 2006, Clermont and Mokhtari 1998, Rose 2002). However, the comparative performance of formants has largely been assessed
using posterior assessments of speaker-specificity (McDougall 2004, 2006; Clermont et al 2008). Using quadratic polynomial fittings of F1 to
F3 from spontaneous tokens of /ai/ extracted from all 100 speakers in the DyVis database (Nolan et al 2009), this paper discusses issues
relating to p(HIE)-based voice comparison analysis (particularly the use of discriminant analysis, DA). Further, DA performance is compared
with an analysis based on likelihood ratios (LRs). LRs based on F3 are found to only marginally outperform F1 and F2 with regard to the
magnitude of same-speaker and different-speaker strength of evidence, as well system performance metrics (EER and ClIr). The poorer than
expected F3 LRs are assessed with regard to the distributions of values within- and between-speakers for the best performing F3 coefficient:
the constant. The data go some way to establishing F3 population statistics which may potentially be applied to voice comparison casework.
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ESTABLISHING TYPICALITY: A CLOSER LOOK AT INDIVIDUAL FORMANTS
Introduction

Many previous studies have considered the comparative value of individual formants as speaker discriminants
for forensic voice comparison (FVC). The results of those which have assessed discriminatory potential using
Bayesian posterior probability metrics (particularly discriminant analysis, DA) (McDougall 2004, Simpson 2008,
Hughes et al 2009) offer considerable support for the traditional view that higher formants, in particular F3, carry
speaker-specific information since it is the lowest two formants which are primarily responsible for carrying social-
indexical information, and maintaining phonetic contrast (Peterson 1959, Ladefoged 2006). However, such positive
results have not been replicated when assessing strength of evidence using likelihood ratios (LRs). Based on the
absolute magnitude of LRs computed using Japanese mid-point vowel data, Kinoshita (2001) found considerable
variability in individual formant performance by phoneme. Similarly, Alderman (2004) found that whilst there was
some improvement in discrimination using F2 and F3 compared with F1, systems displayed considerable variability
in the percentage of same-speaker pairs achieving LRs > unity.

These results highlight two significant issues for FVC research and casework. Firstly, there is a practical concern
about the extent to which optimistic posterior-based discriminatory performance using F3 reflects limitations with
the analysis procedure itself. Specifically, since DA is a form of closed-set analysis (whereby the speaker space
(Nolan 1991) is inhabited only by the speakers included in the model) it is predicted that the results are, in part, a
consequence of the use of relatively small samples (usually up to 25 speakers). The use of larger samples is
therefore likely to have a negative effect on performance since the range of F3 variation between speakers is not
expected to increase sufficiently as the speaker space becomes more densely populated.

Secondly, the results of LR-based studies raise questions about the inherent speaker-discriminatory value of F3.
Despite Rose’s (2002) claim that higher formants are more closely related to resonances in smaller cavities in an
individual’s vocal tract, there are a number of extraneous factors which may introduce systematic variation in F3.
Such factors include lip rounding (Stevens 2001), rhotacisation (Delattre and Freeman 1968, Lindau 1978,
Ladefoged 2006) and accent-specific vocal settings (Laver 1994:§13.5.2.3, Esling and Dickson 1985), all of which
may diminish speaker-discriminatory power.

Using quadratic polynomial estimations of F1, F2 and F3 of spontaneous /a1/ tokens produced by a homogeneous
population of speakers, the present study firstly assesses the effects of different probabilistic approaches on the
estimation of speaker-discriminatory value and discusses issues with the use of small samples in posterior-based
DA. LR-based testing is then used to investigate the extent to which speaker-specificity is encoded in the individual
formants of /ar/. The intrinsic speaker-discriminatory value of F3 is considered with reference to the distribution of
values within- and between-speakers. The implications of these findings with regard to the informed choice of
speaker discriminants for FVC are also explored.

Method
Data

Testing was performed using F1, F2 and F3 trajectories of /a1/ in spontaneous speech from the DyVis database
(Nolan et al 2009) of young, male, Standard Southern British English (SSBE) speakers. Data was extracted from
DyVis Task 1 which involved a mock police interview, aiming to “elicit spontaneous speech in a situation of
‘cognitive conflict,” where speakers are made to lie” (Nolan et al 2009:41). Only target tokens occurring in /aip/,
/att/ and /aik/ contexts were included for ease of segmentation. A Praat script extracted nine time-normalised Hz
values from each of the first three formant trajectories tracking maximally between 5.0 and 6.0 formants, and errors
were hand-corrected. Of the original 100 speakers, three were removed due to small numbers of available tokens.
The resulting data set contained 97 speakers with between 11 and 19 tokens per speaker (mean = 14.5). Formant
trajectories were fitted with quadratic polynomial curves of the form y = ax? + bx + ¢ reducing the nine raw Hz
values to three coefficients per formant.
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Figure 1. Mean F1, F2 and F3 trajectories (dashed lines) + one standard deviation (solid lines) for 97 DyVis speakers based
on between 11 and 19 tokens per speaker

Discriminant analysis

DA is a closed-set form of Bayesian posterior analysis which generates a classification rate of the proportion of
cases correctly assigned to a given group based on a series of input predictors (Tabachnick and Fidell 2007:23-24).
As an expression of p(H|E), the DA classification rate is logically and legally at odds with the paradigm shift (Saks
and Koehler 2005) towards a Bayesian LR framework for forensic comparison evidence (see Morrison 2008:261-
264). Despite this, DA is still commonly used in FVC research as an exploratory tool. Previous studies often used
relatively small numbers of speakers, so DA testing was performed here on a much larger population in order to
address how the speaker space is affected by population size. DA was performed using the ‘leave one out’ method,
starting with five speakers and increasing in blocks of five up to a maximum of 89 (13 tokens per speaker). A cross-
validated classification rate was generated at each stage.

LR-based testing

From the 97 available speakers, 20 were chosen at random to act as LR test data. The typicality of within- and
between-speaker variability was assessed against models generated using the remaining 77 speakers. A MatLab
implementation (Morrison 2007) of Aitken and Lucy’s (2004) Multivariate Kernel Density (MVKD) formula was
used to compute LRs, modelling within-speaker values using an assumption of normality and between-speaker
values with a multivariate Gaussian kernel. The first ten tokens per speaker were divided in half and
contemporaneous SS and DS LR comparisons were performed, outputting raw, log;o and natural log LRs for each
pair. The magnitudes of LRs are assessed with reference to Champod and Evett’s verbal scale (2000:240).
Performance is assessed using equal error rate (EER) and log-LR cost function (Cy;) (Briimmer and du Preez 2006).

This study is of course limited in its forensic realism given the optimal testing conditions. Therefore the
magnitude of the LRs achieved may be somewhat optimistic relative to those in real FVC casework. For the
purposes of the present study comparative performance is of primary concern, rather than absolute strength of
evidence.

Results

Discriminant Analysis
Figure 2. reveals that despite small numbers of predictors (three per formant), very positive DA classification

rates are achieved for each formant when including small numbers of speakers. With five speakers F3 achieves the
highest classification rate (60%) and F2 the lowest (52.3%). However, increasing the number of speakers has two
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important effects on system performance. First, there is a marked decrease in the classification rates achieved
between the minimum and maximum number of speakers, although performance is consistently better than chance.
The largest decrease is found in F3 (51.7%), such that the F3 classification rate using 89 speakers is just 8.3%. This
confirms the prediction that DA classification is highly dependent on the number of speakers included and with only
a small sample can provide an overly optimistic estimation of absolute speaker-discriminatory potential.

Secondly, the number of speakers affects comparative performance of individual formants. F3 predictors
consistently outperform F1 and F2 when between five and 45 speakers are used. With greater than 45 speakers,
classification rates for F1 are generally higher than those for F2 and F3. Further, with 10 and 15 speakers F2
marginally outperforms F1. Therefore, DA classification rates can misrepresent the comparative value of different
formants depending on the number of speakers included.
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FIGURE 2. Classification rates using predictors from each of the first three formants individually according to the number of
speakers included, with chance classification rate plotted (dashed line)

LR-based testing

Figure 3. reveals that the strongest same-speaker (SS) and different-speaker (DS) LRs are achieved when using
combined F1, F2 and F3 input, suggesting that all three formants contribute towards speaker discrimination. The
best-performing formant, in terms of the magnitude of the LRs, is F3. However, the differences in the magnitudes of
SS LRs are marginal across formant conditions, with the F3 mean log;o LR (0.686) just 0.061 greater than that for
F1 and 0.135 greater than F2. All three formants on average achieve SS LRs equivalent to ‘limited’ support for H,,.
Despite a marginally higher mean SS log;y LR for F3, the largest individual SS LR is achieved using F1 (max log;
LR = 1.82). SS LRs for both F1 and F2 were found to be spread over a wider range than those for F3.

For DS pairs, the mean logjy LR for F3 is -2.046 (‘moderately strong’) which is a single verbal category higher
compared with mean values for F1 and F2 (‘moderate’). In terms of the absolute logy values, however, F3 is on
average only 1.23 times greater than F1. As with SS pairs, F1 DS LRs offer higher strength of evidence than those
for F2. According to the comparative magnitude of LRs, F3 appears to offer the most towards the combined strength
of evidence achieved using all three formants, followed by F1 and F2. However, given the marginal differences
between the three systems, the role of F3 in speaker-discrimination compared with those of lower formants is not
considerably greater.
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FIGURE 3. Tippett plot of SS (bold) and DS (dashed) LR comparisons using quadratic coefficients of all formants combined
(orange), F1-only (red), F2-only (blue) and F3-only (light green) as input data

Discriminatory performance is also consistent with the error metrics displayed in Figure 4. The combination of
F1, F2 and F3 achieves the lowest EER and Cy, indicating that both the percentage of pairs offering contrary-to-fact
evidence and the magnitude of ‘errors’ were lower for all three formants combined than any one formant
individually. F3 is the best-performing individual formant, displaying lower EER and Cy; values than F1 or F2, with
F1 marginally outperforming F2. Although the LR-based results offer some support for the value of F3 as a speaker
discriminant, the magnitudes of the differences between formants, particularly in terms of strength of evidence, are
small. Indeed, the finding that strength of evidence is almost as strong for F1 and F2 as it is for F3 raises the issue of
how much community- and speaker-specific information is encoded in each of the formants. The speaker-
discriminatory potential of individual elements of formant trajectories and potential explanations for the LR results
are explored below.
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FIGURE 4. Comparative performance of quadratic coefficients of F1~F3 (orange), F1-only (red), F2-only (blue) and F3-only
(light green) systems based on Cy;, plotted against EER
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Discussion

To address why F3 does not perform markedly better than F1 and F2 in LR-based testing, the levels of within-
and between-speaker variation in the F3 constant (F3 c) are assessed. The constant term is related to absolute
frequency across the formant trajectory and F3 ¢ was chosen on the basis of the highest mean F-ratio generated from
univariate ANOVAs when performing DA. Following Rose et al (2006) between-speaker variation is quantified
using the variance (SD) in the distribution of mean F3 ¢ values by-speaker and within-speaker variation is quantified
using the central tendency of SD values. The variance ratio (VR) is defined as between-speaker variation divided by
within-speaker variation where values > 1 = between-speaker > within-speaker, and < 1 = within-speaker >
between-speaker.

Figure 5.(a) displays the cumulative distribution function (CDF) of mean F3 c values for 89 speakers based on 10
tokens per speaker. The CDF was plotted first using the raw data (‘empirical’ CDF) and then fitted with a normal
distribution to make the results more generalisable (‘theoretical’ CDF). There is a wide distribution of mean F3 ¢
values over a range of 762Hz. This is considerably greater than the between-speaker distribution of mean constant
terms for F1 (277Hz) and F2 (391Hz). The between-speaker variation in F3 ¢ (SD = 181Hz) is therefore promising
for speaker-discrimination.

However, Figure 5.(b) reveals that the distribution of within-speaker variation also has a large range, with SDs
spread maximally between 85Hz and 594Hz, but the distribution is positively skewed. As such, the mean of the SDs,
as a measure of within-speaker variation (220Hz), provides an overestimation of the central tendency. Assessing the
histogram in Figure 6., it appears that the modal bin provides a more appropriate approximation of within-speaker
variation (between 153Hz and 161Hz). Using the mid-point value of the modal bin (157Hz) to act as a single-point
estimate to calculate the VR, between-speaker variation is only marginally higher than that within speakers (VR =
1.153). These findings are consistent with the results of LR-based testing, in that even when using the best-
performing speaker-discriminatory coefficient and a conservative estimate of within-speaker variability, inter-
speaker variation is only marginally higher than intra-speaker variability.

(a) Between-Speaker Variation (b) Within-Speaker Variation
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FIGURE 5. ‘Empirical’ and ‘theoretical’ (normal distribution) CDF of mean (between-speaker variation) (a) and SD (within-
speaker variation) (b) of F3 ¢ coefficient values from 89 speakers

Proceedings of Meetings on Acoustics, Vol. 19, 060042 (2013)

Page 6



V. Hughes

T Modal bin = 153Hz-161Hz ]
Mid-point of modal bin = 157Hz

0
-100 0 100 200 300 400 500 600
F3 ¢ Coefficient SD

FIGURE 6. Histogram of F3 ¢ SD values (using 60 bins of 8.49Hz each) fitted with a non-modified normal distribution

As such, F3 in these data does not appear to conform strongly to the requirement that a good speaker
discriminant should display high between-speaker variation and low within-speaker variation (Nolan 1983). Further,
the results are based on one style of speech from one recording with a single interlocutor recorded directly in studio
quality. Therefore there is considerable scope for greater within-speaker variability according to different stylistic
factors.

Correlations

Pearson correlations were calculated using mean coefficient values by-speaker in order to test whether elements
of the F3 trajectory are correlated with F1 and F2. Since F1 and F2 carry considerable social-indexical information
specific to the speech community, any correlation with F3 will necessarily impact on speaker-discriminatory
potential. Table 1. displays all significant correlations involving F3 coefficients. Most significantly Table 1. reveals
correlations between F3 c¢ and both F1 and F2 c coefficients. The correlations between the ¢ terms are somewhat
predictable in that formant frequencies must remain acoustically distinct.

TABLE 1. Significant correlations (p<0.05) involving F3 coefficients using mean values by-speaker

p-value rho
Flc F3c 0.0015 0.3313
F2 bx F3c 0.0069 0.2846
F2c¢ F3 bx 0.0015 0.3318
F2c¢ F3c 0.0029 -0.3126

The interaction between F3 ¢ and coefficients of F1 and F2 can possibly be explained in two ways based on the
finding that F3 c offers the most towards speaker-discrimination. Firstly, the initial prediction for LR-based testing
was that F3 would markedly outperform the lower formants because F3 is more closely linked to speaker-specificity.
Following this assumption the results may be interpreted as better than anticipated LR performance for F1 and F2, in
part, due to the relationship between their coefficients and the best performing speaker-discriminatory predictor (F3
¢). This offers some evidence that F1 and F2 trajectories encode ‘extrinsic’ speaker-specific information, by virtue
of a correlation with a stronger F3 speaker-predictor.

According to the second interpretation, if F1 and F2 are primarily, if not categorically, responsible for defining
community norms, then their correlation with F3 ¢ suggests that F3 also encodes ‘extrinsic’ information about the
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community, rather than exclusively being associated with the speaker. Such extrinsic community information
encoded in F3 may account for the low variance ratio and poorer than expected LRs..

Choosing Discriminant Parameters for FVC

These findings highlight a fundamental issue in FVC which relates to the choice of discriminant parameters. F3
discrimination may be somewhat poorer than expected here, in part, due to the specific phoneme under
investigation. In particular the front, close offset in the second element of /ar/ offers greater potential for interaction
between F2 and F3 since high F2 encroaches on the potential range of F3, thus forcing F3 higher. It is therefore
likely that vowels with no front, close element will have F3 trajectories which are more independent of F2, leading
to better F3 performance. Further, the better than expected performance of F1 and F2 may be due to the specific
dialect used, with SSBE offering greater potential for between-speaker variation on the open-close/ front-back
dimensions specifically at the onset of /ar/. Therefore in identifying the best general discriminant or parameters to
investigate, it is essential to acknowledge that the speaker space is constrained by anatomical, articulatory, social-
indexical and phonological factors all of which determine the speaker-discriminatory power of a parameter in a
given speech community.

Moreover, Rose (2006) claims that “not all speakers differ from each other in the same way.” Therefore, as with
many traditional phonetic-acoustic parameters (such as fundamental frequency (f0) (Hudson et al 2007) and
articulation rate (AR) (Gold 2012a, 2012b)), the variance ratio for /ai/ F3 in SSBE suggests that its contribution lies
primarily at the tails of the distribution where values in the KS and DS are atypical with regard to the population
models of within- and between-speaker variation. Given the LRs based on F1, F2 and F3 combined, inherently poor
discriminants may still be able to play an important role as part of a componential FVC analysis.

Conclusion

The comparative DA performance of individual formants has revealed a number of practical problems with the
application of posterior probability metrics to FVC tasks. This highlights that considerable care should be taken
when using DA as a metric of speaker discrimination. Using the LR, F3 was found to outperform F1 and F2 only
marginally in the magnitude of strength of evidence, Cy; and EER. Further, it was found that whilst the distribution
of between-speaker mean values for F3 c is rather large, and considerably larger than those for the ¢ terms of F1 or
F2, the level of within-speaker variation was only marginally smaller resulting in good separation of SS and DS
pairs but low LRs. The results of this study support a more conservative approach to the speaker-discriminatory
value of F3 in FVC casework and a consideration of the biological, linguistic, social and stylistic factors which
constrain the speaker space.
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