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  Research into the forensic performance of individual formants has offered considerable evidence to support the traditional acoustic-phonetic
view that whilst F1 and F2 encode broad phonetic contrast, higher formants may offer greater speaker-discriminatory potential (Peterson 1959,
Ladefoged 2006, Clermont and Mokhtari 1998, Rose 2002). However, the comparative performance of formants has largely been assessed
using posterior assessments of speaker-specificity (McDougall 2004, 2006; Clermont et al 2008). Using quadratic polynomial fittings of F1 to
F3 from spontaneous tokens of /ai/ extracted from all 100 speakers in the DyVis database (Nolan et al 2009), this paper discusses issues
relating to p(H|E)-based voice comparison analysis (particularly the use of discriminant analysis, DA). Further, DA performance is compared
with an analysis based on likelihood ratios (LRs). LRs based on F3 are found to only marginally outperform F1 and F2 with regard to the
magnitude of same-speaker and different-speaker strength of evidence, as well system performance metrics (EER and Cllr). The poorer than
expected F3 LRs are assessed with regard to the distributions of values within- and between-speakers for the best performing F3 coefficient:
the constant. The data go some way to establishing F3 population statistics which may potentially be applied to voice comparison casework.
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ESTABLISHING TYPICALITY: A CLOSER LOOK AT INDIVIDUAL FORMANTS 

Introduction 

Many previous studies have considered the comparative value of individual formants as speaker discriminants 
for forensic voice comparison (FVC). The results of those which have assessed discriminatory potential using 
Bayesian posterior probability metrics (particularly discriminant analysis, DA) (McDougall 2004, Simpson 2008, 
Hughes et al 2009) offer considerable support for the traditional view that higher formants, in particular F3, carry 
speaker-specific information since it is the lowest two formants which are primarily responsible for carrying social-
indexical information, and maintaining phonetic contrast (Peterson 1959, Ladefoged 2006). However, such positive 
results have not been replicated when assessing strength of evidence using likelihood ratios (LRs). Based on the 
absolute magnitude of LRs computed using Japanese mid-point vowel data, Kinoshita (2001) found considerable 
variability in individual formant performance by phoneme. Similarly, Alderman (2004) found that whilst there was 
some improvement in discrimination using F2 and F3 compared with F1, systems displayed considerable variability 
in the percentage of same-speaker pairs achieving LRs > unity. 

These results highlight two significant issues for FVC research and casework. Firstly, there is a practical concern 
about the extent to which optimistic posterior-based discriminatory performance using F3 reflects limitations with 
the analysis procedure itself. Specifically, since DA is a form of closed-set analysis (whereby the speaker space 
(Nolan 1991) is inhabited only by the speakers included in the model) it is predicted that the results are, in part, a 
consequence of the use of relatively small samples (usually up to 25 speakers). The use of larger samples is 
therefore likely to have a negative effect on performance since the range of F3 variation between speakers is not 
expected to increase sufficiently as the speaker space becomes more densely populated. 

Secondly, the results of LR-based studies raise questions about the inherent speaker-discriminatory value of F3. 
Despite Rose’s (2002) claim that higher formants are more closely related to resonances in smaller cavities in an 
individual’s vocal tract, there are a number of extraneous factors which may introduce systematic variation in F3. 
Such factors include lip rounding (Stevens 2001), rhotacisation (Delattre and Freeman 1968, Lindau 1978, 
Ladefoged 2006) and accent-specific vocal settings (Laver 1994:§13.5.2.3, Esling and Dickson 1985), all of which 
may diminish speaker-discriminatory power. 

Using quadratic polynomial estimations of F1, F2 and F3 of spontaneous /aɪ/ tokens produced by a homogeneous 
population of speakers, the present study firstly assesses the effects of different probabilistic approaches on the 
estimation of speaker-discriminatory value and discusses issues with the use of small samples in posterior-based 
DA. LR-based testing is then used to investigate the extent to which speaker-specificity is encoded in the individual 
formants of /aɪ/. The intrinsic speaker-discriminatory value of F3 is considered with reference to the distribution of 
values within- and between-speakers. The implications of these findings with regard to the informed choice of 
speaker discriminants for FVC are also explored. 

Method 

Data 

Testing was performed using F1, F2 and F3 trajectories of /aɪ/ in spontaneous speech from the DyVis database 
(Nolan et al 2009) of young, male, Standard Southern British English (SSBE) speakers. Data was extracted from 
DyVis Task 1 which involved a mock police interview, aiming to “elicit spontaneous speech in a situation of 
‘cognitive conflict,’ where speakers are made to lie” (Nolan et al 2009:41). Only target tokens occurring in /aɪp/, 
/aɪt/ and /aɪk/ contexts were included for ease of segmentation. A Praat script extracted nine time-normalised Hz 
values from each of the first three formant trajectories tracking maximally between 5.0 and 6.0 formants, and errors 
were hand-corrected. Of the original 100 speakers, three were removed due to small numbers of available tokens. 
The resulting data set contained 97 speakers with between 11 and 19 tokens per speaker (mean = 14.5). Formant 
trajectories were fitted with quadratic polynomial curves of the form 𝑦 = 𝑎𝑥! + 𝑏𝑥 + 𝑐 reducing the nine raw Hz 
values to three coefficients per formant. 
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Figure 1. Mean F1, F2 and F3 trajectories (dashed lines) ± one standard deviation (solid lines) for 97 DyVis speakers based 

on between 11 and 19 tokens per speaker 

Discriminant analysis 

DA is a closed-set form of Bayesian posterior analysis which generates a classification rate of the proportion of 
cases correctly assigned to a given group based on a series of input predictors (Tabachnick and Fidell 2007:23-24). 
As an expression of 𝑝 H E , the DA classification rate is logically and legally at odds with the paradigm shift (Saks 
and Koehler 2005) towards a Bayesian LR framework for forensic comparison evidence (see Morrison 2008:261-
264). Despite this, DA is still commonly used in FVC research as an exploratory tool. Previous studies often used 
relatively small numbers of speakers, so DA testing was performed here on a much larger population in order to 
address how the speaker space is affected by population size. DA was performed using the ‘leave one out’ method, 
starting with five speakers and increasing in blocks of five up to a maximum of 89 (13 tokens per speaker). A cross-
validated classification rate was generated at each stage.  

LR-based testing 

From the 97 available speakers, 20 were chosen at random to act as LR test data. The typicality of within- and 
between-speaker variability was assessed against models generated using the remaining 77 speakers. A MatLab 
implementation (Morrison 2007) of Aitken and Lucy’s (2004) Multivariate Kernel Density (MVKD) formula was 
used to compute LRs, modelling within-speaker values using an assumption of normality and between-speaker 
values with a multivariate Gaussian kernel. The first ten tokens per speaker were divided in half and 
contemporaneous SS and DS LR comparisons were performed, outputting raw, log10 and natural log LRs for each 
pair. The magnitudes of LRs are assessed with reference to Champod and Evett’s verbal scale (2000:240). 
Performance is assessed using equal error rate (EER) and log-LR cost function (Cllr) (Brümmer and du Preez 2006). 

This study is of course limited in its forensic realism given the optimal testing conditions. Therefore the 
magnitude of the LRs achieved may be somewhat optimistic relative to those in real FVC casework. For the 
purposes of the present study comparative performance is of primary concern, rather than absolute strength of 
evidence. 

Results 

Discriminant Analysis 

Figure 2. reveals that despite small numbers of predictors (three per formant), very positive DA classification 
rates are achieved for each formant when including small numbers of speakers. With five speakers F3 achieves the 
highest classification rate (60%) and F2 the lowest (52.3%). However, increasing the number of speakers has two 
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important effects on system performance. First, there is a marked decrease in the classification rates achieved 
between the minimum and maximum number of speakers, although performance is consistently better than chance. 
The largest decrease is found in F3 (51.7%), such that the F3 classification rate using 89 speakers is just 8.3%. This 
confirms the prediction that DA classification is highly dependent on the number of speakers included and with only 
a small sample can provide an overly optimistic estimation of absolute speaker-discriminatory potential. 

Secondly, the number of speakers affects comparative performance of individual formants. F3 predictors 
consistently outperform F1 and F2 when between five and 45 speakers are used. With greater than 45 speakers, 
classification rates for F1 are generally higher than those for F2 and F3. Further, with 10 and 15 speakers F2 
marginally outperforms F1. Therefore, DA classification rates can misrepresent the comparative value of different 
formants depending on the number of speakers included. 

 

 
FIGURE 2. Classification rates using predictors from each of the first three formants individually according to the number of 

speakers included, with chance classification rate plotted (dashed line) 

LR-based testing 

Figure 3. reveals that the strongest same-speaker (SS) and different-speaker (DS) LRs are achieved when using 
combined F1, F2 and F3 input, suggesting that all three formants contribute towards speaker discrimination. The 
best-performing formant, in terms of the magnitude of the LRs, is F3. However, the differences in the magnitudes of 
SS LRs are marginal across formant conditions, with the F3 mean log10 LR (0.686) just 0.061 greater than that for 
F1 and 0.135 greater than F2. All three formants on average achieve SS LRs equivalent to ‘limited’ support for Hp. 
Despite a marginally higher mean SS log10 LR for F3, the largest individual SS LR is achieved using F1 (max log10 
LR = 1.82). SS LRs for both F1 and F2 were found to be spread over a wider range than those for F3. 

For DS pairs, the mean log10 LR for F3 is -2.046 (‘moderately strong’) which is a single verbal category higher 
compared with mean values for F1 and F2 (‘moderate’). In terms of the absolute log10 values, however, F3 is on 
average only 1.23 times greater than F1. As with SS pairs, F1 DS LRs offer higher strength of evidence than those 
for F2. According to the comparative magnitude of LRs, F3 appears to offer the most towards the combined strength 
of evidence achieved using all three formants, followed by F1 and F2. However, given the marginal differences 
between the three systems, the role of F3 in speaker-discrimination compared with those of lower formants is not 
considerably greater.  

V. Hughes

Proceedings of Meetings on Acoustics, Vol. 19, 060042 (2013)                                                                                                                                    Page 4



 
FIGURE 3. Tippett plot of SS (bold) and DS (dashed) LR comparisons using quadratic coefficients of all formants combined 

(orange), F1-only (red), F2-only (blue) and F3-only (light green) as input data 
 

Discriminatory performance is also consistent with the error metrics displayed in Figure 4. The combination of 
F1, F2 and F3 achieves the lowest EER and Cllr, indicating that both the percentage of pairs offering contrary-to-fact 
evidence and the magnitude of ‘errors’ were lower for all three formants combined than any one formant 
individually. F3 is the best-performing individual formant, displaying lower EER and Cllr values than F1 or F2, with 
F1 marginally outperforming F2. Although the LR-based results offer some support for the value of F3 as a speaker 
discriminant, the magnitudes of the differences between formants, particularly in terms of strength of evidence, are 
small. Indeed, the finding that strength of evidence is almost as strong for F1 and F2 as it is for F3 raises the issue of 
how much community- and speaker-specific information is encoded in each of the formants. The speaker-
discriminatory potential of individual elements of formant trajectories and potential explanations for the LR results 
are explored below. 

 

 
FIGURE 4. Comparative performance of quadratic coefficients of F1~F3 (orange), F1-only (red), F2-only (blue) and F3-only 

(light green) systems based on Cllr plotted against EER 
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Discussion 

To address why F3 does not perform markedly better than F1 and F2 in LR-based testing, the levels of within- 
and between-speaker variation in the F3 constant (F3 c) are assessed. The constant term is related to absolute 
frequency across the formant trajectory and F3 c was chosen on the basis of the highest mean F-ratio generated from 
univariate ANOVAs when performing DA. Following Rose et al (2006) between-speaker variation is quantified 
using the variance (SD) in the distribution of mean F3 c values by-speaker and within-speaker variation is quantified 
using the central tendency of SD values. The variance ratio (VR) is defined as between-speaker variation divided by 
within-speaker variation where values > 1 = between-speaker > within-speaker, and < 1 = within-speaker > 
between-speaker.  

Figure 5.(a) displays the cumulative distribution function (CDF) of mean F3 c values for 89 speakers based on 10 
tokens per speaker. The CDF was plotted first using the raw data (‘empirical’ CDF) and then fitted with a normal 
distribution to make the results more generalisable (‘theoretical’ CDF). There is a wide distribution of mean F3 c 
values over a range of 762Hz. This is considerably greater than the between-speaker distribution of mean constant 
terms for F1 (277Hz) and F2 (391Hz). The between-speaker variation in F3 c (SD = 181Hz) is therefore promising 
for speaker-discrimination. 

However, Figure 5.(b) reveals that the distribution of within-speaker variation also has a large range, with SDs 
spread maximally between 85Hz and 594Hz, but the distribution is positively skewed. As such, the mean of the SDs, 
as a measure of within-speaker variation (220Hz), provides an overestimation of the central tendency. Assessing the 
histogram in Figure 6., it appears that the modal bin provides a more appropriate approximation of within-speaker 
variation (between 153Hz and 161Hz). Using the mid-point value of the modal bin (157Hz) to act as a single-point 
estimate to calculate the VR, between-speaker variation is only marginally higher than that within speakers (VR = 
1.153). These findings are consistent with the results of LR-based testing, in that even when using the best-
performing speaker-discriminatory coefficient and a conservative estimate of within-speaker variability, inter-
speaker variation is only marginally higher than intra-speaker variability. 

  
 

 
FIGURE 5. ‘Empirical’ and ‘theoretical’ (normal distribution) CDF of mean (between-speaker variation) (a) and SD (within-

speaker variation) (b) of F3 c coefficient values from 89 speakers  
 
 

‘empirical’ CDF 
‘theoretical’ CDF 

Mean = 2487 Hz 
SD = 181 Hz 

(a) Between-Speaker Variation (b) Within-Speaker Variation 

Mean = 220 Hz 
SD = 98 Hz 

‘empirical’ CDF 
‘theoretical’ CDF 

V. Hughes

Proceedings of Meetings on Acoustics, Vol. 19, 060042 (2013)                                                                                                                                    Page 6



 
FIGURE 6. Histogram of F3 c SD values (using 60 bins of 8.49Hz each) fitted with a non-modified normal distribution 

 
As such, F3 in these data does not appear to conform strongly to the requirement that a good speaker 

discriminant should display high between-speaker variation and low within-speaker variation (Nolan 1983). Further, 
the results are based on one style of speech from one recording with a single interlocutor recorded directly in studio 
quality. Therefore there is considerable scope for greater within-speaker variability according to different stylistic 
factors.  

Correlations 

Pearson correlations were calculated using mean coefficient values by-speaker in order to test whether elements 
of the F3 trajectory are correlated with F1 and F2. Since F1 and F2 carry considerable social-indexical information 
specific to the speech community, any correlation with F3 will necessarily impact on speaker-discriminatory 
potential. Table 1. displays all significant correlations involving F3 coefficients. Most significantly Table 1. reveals 
correlations between F3 c and both F1 and F2 c coefficients. The correlations between the c terms are somewhat 
predictable in that formant frequencies must remain acoustically distinct. 
 

TABLE 1. Significant correlations (p<0.05) involving F3 coefficients using mean values by-speaker  

  

p-value rho 

F1 c F3 c 0.0015 0.3313 

F2 bx F3 c 0.0069 0.2846 

F2 c F3 bx 0.0015 0.3318 

F2 c F3 c 0.0029 -0.3126 

 
The interaction between F3 c and coefficients of F1 and F2 can possibly be explained in two ways based on the 

finding that F3 c offers the most towards speaker-discrimination. Firstly, the initial prediction for LR-based testing 
was that F3 would markedly outperform the lower formants because F3 is more closely linked to speaker-specificity. 
Following this assumption the results may be interpreted as better than anticipated LR performance for F1 and F2, in 
part, due to the relationship between their coefficients and the best performing speaker-discriminatory predictor (F3 
c). This offers some evidence that F1 and F2 trajectories encode ‘extrinsic’ speaker-specific information, by virtue 
of a correlation with a stronger F3 speaker-predictor.  

According to the second interpretation, if F1 and F2 are primarily, if not categorically, responsible for defining 
community norms, then their correlation with F3 c suggests that F3 also encodes ‘extrinsic’ information about the 

Modal bin = 153Hz-161Hz 
Mid-point of modal bin = 157Hz 
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community, rather than exclusively being associated with the speaker. Such extrinsic community information 
encoded in F3 may account for the low variance ratio and poorer than expected LRs.. 

Choosing Discriminant Parameters for FVC 

These findings highlight a fundamental issue in FVC which relates to the choice of discriminant parameters. F3 
discrimination may be somewhat poorer than expected here, in part, due to the specific phoneme under 
investigation. In particular the front, close offset in the second element of /aɪ/ offers greater potential for interaction 
between F2 and F3 since high F2 encroaches on the potential range of F3, thus forcing F3 higher. It is therefore 
likely that vowels with no front, close element will have F3 trajectories which are more independent of F2, leading 
to better F3 performance. Further, the better than expected performance of F1 and F2 may be due to the specific 
dialect used, with SSBE offering greater potential for between-speaker variation on the open-close/ front-back 
dimensions specifically at the onset of /aɪ/. Therefore in identifying the best general discriminant or parameters to 
investigate, it is essential to acknowledge that the speaker space is constrained by anatomical, articulatory, social-
indexical and phonological factors all of which determine the speaker-discriminatory power of a parameter in a 
given speech community. 

Moreover, Rose (2006) claims that “not all speakers differ from each other in the same way.” Therefore, as with 
many traditional phonetic-acoustic parameters (such as fundamental frequency (f0) (Hudson et al 2007) and 
articulation rate (AR) (Gold 2012a, 2012b)), the variance ratio for /aɪ/ F3 in SSBE suggests that its contribution lies 
primarily at the tails of the distribution where values in the KS and DS are atypical with regard to the population 
models of within- and between-speaker variation. Given the LRs based on F1, F2 and F3 combined, inherently poor 
discriminants may still be able to play an important role as part of a componential FVC analysis.  

Conclusion 

The comparative DA performance of individual formants has revealed a number of practical problems with the 
application of posterior probability metrics to FVC tasks. This highlights that considerable care should be taken 
when using DA as a metric of speaker discrimination. Using the LR, F3 was found to outperform F1 and F2 only 
marginally in the magnitude of strength of evidence, Cllr and EER. Further, it was found that whilst the distribution 
of between-speaker mean values for F3 c is rather large, and considerably larger than those for the c terms of F1 or 
F2, the level of within-speaker variation was only marginally smaller resulting in good separation of SS and DS 
pairs but low LRs. The results of this study support a more conservative approach to the speaker-discriminatory 
value of F3 in FVC casework and a consideration of the biological, linguistic, social and stylistic factors which 
constrain the speaker space. 

ACKNOWLEDGMENTS 

This research is funded by a UK Economic and Social Research Council DTC scholarship. Thanks to Paul 
Foulkes, Dominic Watt and Peter French for comments and suggestions on earlier drafts of this paper. Data 
extraction and analysis was facilitated by scripts written by Caroline Williams and Toby Hudson, Ashley Brereton, 
Geoffrey Morrison, Philip Harrison, Anil Alexander and Niko Brümmer. 

REFERENCES 

Aitken, C. G. G. and Lucy, D. (2004). “Evaluation of trace evidence in the form of multivariate data,” App. Stat. 54, 109-122. 
Alderman, T. (2004). “The Bernard data set as a reference distribution for Bayesian likelihood ratio-based forensic speaker 

identification using formants,” Proceedings of the 10th Australasian Conference on Speech Science and Technology. Sydney, 
Australia. 8-10 December 2004. 510-515. 

Brümmer, N. and du Preez, J. (2006). “Application-independent evaluation of speaker detection,” Computer Speech and 
Language 20, 230-275. 

Champod, C. and Evett, I. W. (2000). “Commentary on A.P.A. Broeders (1999) ‘Some observations on the use of probability 
scales in forensic identification,” Forensic Linguistics 7, 238-243. 

Delattre, P. and Freeman, D. C. (1968). “A dialect study of American r’s by x-ray motion picture,” Linguistics, an international 
review” 44, 29-68. 

V. Hughes

Proceedings of Meetings on Acoustics, Vol. 19, 060042 (2013)                                                                                                                                    Page 8



Esling, J. H. and Dickson, B. C. (1985). “Acoustical procedures for articulatory setting analysis in accent,” in Papers from the 
Firth International conference on Methods in Dialectology edited by H. J. Warkentyne (University of Victoria, British 
Columbia), pp. 155-170. 

Gold, E. (2012a). “Articulation rate as a discriminant in forensic speaker comparisons,” UNSW Forensic Speech Science 
Conference. Sydney, Australia. 3 December 2012. 

Gold, E. (2012b). “The evidential value of articulation rate in forensic speaker comparison,” BBfor2 Short Summer School in 
Forensic Evidence Evaluation and Validation. Madrid, Spain. 18 June 2012. 

Hudson, T., de Jong, G., McDougall, K., Harrison, P. and Nolan, F. (2007). “F0 statistics for 100 young male speakers of 
Standard Southern British English,” Proceedings of the 16th International Congress of Phonetic Sciences. Saarbrücken, 
Germany. 6-10 August 2007. 1809-1812. 

Hughes, V., McDougall, K. and Foulkes, P. (2009). “Diphthong dynamics in unscripted speech,” Paper presented at International 
Association of Forensic Phonetics and Acoustics conference. Cambridge, UK. 2-5 August 2009. 

Kinoshita, Y. (2001). Testing realistic forensic speaker identification in Japanese: a likelihood ratio-based approach using 
formants (Ph.D. dissertation, Australian National University, 2001). 

Ladefoged, P. (2006). A course in phonetics (5th edition) (Wadsworth Cengage Learning, Boston).  
Laver, J. (1994). Principles of phonetics (Cambridge University Press, Cambridge). 
Lindau, M. (1978). “Vowel features,” Language 54, 541–563. 
McDougall, K. (2004). “Speaker-specific formant dynamics: an experiment on Australian English /aɪ/,” International Journal of 

Speech, Language and the Law 11, 103-130. 
Morrison, G. S. (2007). “MatLab implementation of Aitken and Lucy’s (2004) forensic likelihood ratio software using 

multivariate-kernel-density estimation,” Downloaded: 31st May 2011. 
Morrison, G. S. (2008). “Forensic voice comparison using likelihood ratios based on polynomial curves fitted to the formant 

trajectories of Australian English /aɪ/,” Journal of Speech, Language and the Law 15, 249-266. 
Nolan, F. (1983). The phonetic bases of speaker recognition. (Cambridge University Press. Cambridge). 
Nolan, F. (1991). “Forensic phonetics,” Journal of Linguistics 27, 483-493. 
Nolan, F., McDougall, K., de Jong, G. and Hudson, T. (2009). “The DyVis database: style-controlled recordings of 100 

homogeneous speakers for forensic phonetic research,” International Journal of Speech, Language and the Law 16, 31-57. 
Peterson, G. E. (1959). “The acoustics of speech – part II: acoustical properties of speech waves,” in Handbook of Speech 

Pathology,  edited by L, E. (Peter Owen, London), pp. 137-173. 
Rose, P. (2002). Forensic Speaker Identification (Taylor and Francis, London). 
Rose, P., Kinoshita, Y. and Alderman, T. (2006). “Realistic extrinsic forensic speaker discrimination with the diphthong /aɪ/,” 

Proceedings of the 11th Australasian International Conference on Speech Science and Technology. University of Auckland, 
New Zealand. 6-8 December 2006. 329-334. 

Rose, P. and Morrison, G. S. (2009). “A response to the UK Position Statement on forensic speaker comparison,” Int. J. Sp. 
Lang. and the Law 16, 139-163. 

Saks, M. J. and Koehler, J. J. (2005). “The coming paradigm shift in forensic identification science,” Science 309, 892–895. 
Simpson, S. (2008). Testing the speaker discrimination ability of formant measurements in forensic speaker comparison cases 

(MSc dissertation, York, UK, 2008). 
Stevens, K. N. (2001). Acoustic phonetics (MIT Press, Cambridge, MA). 
Tabachnick, B. G. and Fidell, L. S. (2007). Using multivariate statistics (5th edition) (Pearson. Boston). 

V. Hughes

Proceedings of Meetings on Acoustics, Vol. 19, 060042 (2013)                                                                                                                                    Page 9


	Cover Page
	Article

